光子学报, 2019, 48 (1): 0111003, 网络出版: 2019-01-27   

基于级联光栅的X射线相衬成像实验研究

Experimental Study of X-ray Phase Contrast Imaging Based on Cascaded Grating
作者单位
1 深圳大学 光电工程学院 光电子器件与系统(教育部、广东省)重点实验室,广东 深圳 518060
2 深圳技术大学(筹) 新材料与新能源学院,广东 深圳 518118
摘要
为避免小周期高宽比吸收光栅的制作, 提出了由泰伯-劳干涉仪和逆泰伯-劳干涉仪组成的级联光栅X射线相衬成像装置, 该装置利用泰伯-劳干涉仪的自成像作为逆泰伯-劳干涉仪的源.通过实验验证了该方法的有效性, 得到了成像系统的莫尔条纹和强度振荡曲线.条纹最高对比度为17.4%, 随着吸收光栅偏离零点位置, 条纹对比度逐渐降低, 但是在其位置跨越从-17 mm到12 mm的范围内, 条纹对比度仍保持在10%以上.实验讨论了样品位置对成像灵敏度的影响, 结果表明当样品位置靠近相位光栅两侧时, 其成像灵敏度最高.本文的研究可应用于生物医学成像的大视场X射线相衬成像系统的设计.
Abstract
A cascade interferometer for X-ray phase-contrast imaging composed by a Talbot-Lau interferometer and an inverse Talbot-Lau interferometer was implemented, which the self-image of Talbot-Lau interferometer being used as the source of the inverse Talbot-Lau interferometer, with the purpose to avoid the fabrication of small-period high aspect-ratio absorption gratings. Experiments validated the method,while moire fringes and intensity oscillation curves of the imaging system are obtained. The maximum visibility of the fringes was 17.4%. With the absorption grating deviating from the zero position, the visibility of the fringes decreased gradually. But it remained above 10%, when the position of the absorption grating spaned from -17 mm to 12 mm. And the angular sensitivity as a function of the sample position was discussed. Results show that the highest sensitivity is obtained, when the investigated object is close to the phase grating. This will be useful for designing an X-ray phase-contrast imaging system for applications of biomedical imaging in large field of view.
参考文献

[1] MOMOSE A, TAKEDA T, ITAI Y, et al. Phase-contrast X-ray computed tomography for observing biological soft tissues[J]. Nature Medicine, 1996, 2: 473-475.

[2] DAVIS T J, GAO D, GUREYEV T E, et al. Phase-contrast imaging of weakly absorbing materials using hard X-rays[J]. Nature, 1995, 373: 595-598.

[3] WILKINS S W, GUREYEV T E, GAO D, et al. Phase-contrast imaging using polychromatic hard X-rays[J]. Nature, 1996, 384: 335-338 .

[4] OLIVO A, SPELLER R. A coded-aperture technique allowing X-ray phase contrast imaging with conventional sources[J]. Applied Physics Letters, 2007, 91: 074106.

[5] DAVID C, NOHAMMER B, SOLAK H H. Differential X-ray phase contrast imaging using shearing interferometer[J]. Applied Physics Letters, 2002, 81: 3287-3289.

[6] MOMOSE A, KAWAMOTO S, KOYAMA I, et al. Demonstration of X-Ray talbot interferometry[J]. Japanese Journal of Applied Physics, 2003, 42: 866-868.

[7] PFEIFFER F, WEITKAMP T, BUNK O I, et al. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources[J]. Nature Physics, 2006, 2: 258-261.

[8] ZAMBELLI J, BEVINS N, QI Z I, et al. Radiation dose efficiency comparison between differential phase contrast CT and conventional absorption CT[J]. Medical Physics, 2010, 37: 2473-2479.

[9] ZHU P, ZHANG K, WANG Z I, et al. Low-dose, simple, and fast grating-based X-ray phase-contrast imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107: 13576-13581.

[10] DU Y, LIU X, LEI Y, et al. Non-absorption grating approach for X-ray phase contrast imaging[J]. Optics Express, 2011, 19: 22669-22674.

[11] MARCO S, ZHENTIAN W, THOMAS T I, et al. The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography[J]. Investigative Radiology, 2011, 46(12): 801-806.

[12] SUSANNE G, MARIAN W, JULIA H I, et al. Evaluation of phase-contrast CT of breast tissue at conventional X-ray sources-presentation of selected findings[J]. Zeitschrift für Medizinische Physik, 2013, 10451: 1-10.

[13] ATSUSHI M, WATARU Y, KAZUHIRO K I, et al. X-ray phase imaging: from synchrotron to hospital[J]. Philosophical Transactions of the Royal Society A, 2014, 372: 1-7.

[14] 黄建衡, 雷耀虎, 杜杨, 等.铋光栅X射线相衬成像条纹对比度的定量计算[J].光学学报,2017,37(4): 0434001.

    HUANG Jian-heng, LEI Yao-hu, YU Yang, et al. Quantitative calculation of fringe visibility in bismuth grating-based X-ray phase-contrast imaging[J]. Acta Optica Sinica, 2017, 37(4): 0434001.

[15] 刘鑫, 郭金川.微分相衬成像阵列光源[J].光子学报,2011,40(2): 242-246.

    LIU Xin, GUO Jin-chuan. Arrayed source in differential phase contrast imaging[J]. Acta Photonica Sinica, 2011, 40(2): 242-246.

[16] 赵志刚, 王茹, 雷耀虎, 等.可微调非粘结光锥阵列耦合数字X射线探测器[J].光子学报,2015,44(5): 0504001.

    ZHAO Zhi-gang, WANG Ru, LEI Yao-hu, et al. Fine adjustable non-glued fiber optic taper array coupled digital X-ray detector[J]. Acta Photonica Sinica, 2015, 44(5): 0504001.

[17] DONATH T, CHABIOR M, PFEIFFER F I, et al. Inverse geometry for grating-based x-ray phase-contrast imaging[J]. Journal of Applied Physics, 2009, 106: 054703.

[18] MOMOSE A, KUWABARA H, YASHIRO W. X-ray phase imaging using lau effect[J]. Applied Physics Express, 2011, 4: 066603.

[19] SHIMURA T, MORIMOTO N, FUJINO S, et al. Hard x-ray phase contrast imaging using a tabletop Talbot-Lau interferome ter with multiline embedded x-ray targets[J]. Optics Letters, 2013, 38(2): 157-159.

[20] NAOKI M, SHO F, KENICHI O, et al. X-ray phase contrast imaging by compact Talbot-Lau interferometer with a single transmission grating[J]. Optics Letters, 2014, 39(15): 4297-4300.

[21] MOMOSE A, YASHIRO W, KUWABARA H, et al. Grating-based X-ray phase imaging using multiline X-ray source[J]. Japanese Journal of Applied Physics, 2009, 48: 076512.

李冀, 黄建衡, 雷耀虎, 刘鑫, 赵志刚. 基于级联光栅的X射线相衬成像实验研究[J]. 光子学报, 2019, 48(1): 0111003. LI Ji, HUANG Jian-heng, LEI Yao-hu, LIU Xin, ZHAO Zhi-gang. Experimental Study of X-ray Phase Contrast Imaging Based on Cascaded Grating[J]. ACTA PHOTONICA SINICA, 2019, 48(1): 0111003.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!