光子学报, 2018, 47 (12): 1201002, 网络出版: 2019-01-10   

贝塞尔高斯光束在各向异性湍流中的传输特性

Propagation Characteristics of Bessel-Gaussian Beam in Anisotropic Atmosphere
作者单位
1 西安电子科技大学 物理与光电工程学院, 西安 710071
2 国防科技大学 脉冲功率激光技术国家重点实验室, 合肥 230037
摘要
采用随机相位屏仿真方法模拟了各向异性大气湍流及贝塞尔高斯涡旋光束在其中的强度分布、在轴闪烁指数和抖动效应, 分析了各向异性湍流参数和波源参数对涡旋光束传输质量的影响.结果表明, 在各向异性大气湍流中, 贝塞尔高斯涡旋光束的强度分布随传输距离的变化情况与离轴距离有关, 仅一级圆环处强度值单调递减, 其余次级圆环处强度值均呈现先增后降的趋势.在近距离处, 贝塞尔高斯涡旋光束的在轴闪烁指数随波形参数的增大而减小, 随光束宽度的增大呈现先上升后下降再上升的趋势, 该现象与贝塞尔高斯光束的光斑尺寸大小相关; 其抖动效应随波形参数、拓扑荷数量、波长和束腰半径的增大而减弱.但在远距离处贝塞尔高斯涡旋光束的闪烁效应和抖动效应随波形参数的影响与近距离处相反, 这与贝塞尔高斯光束的展宽突然增大的现象一致.贝塞尔高斯涡旋光束在各向异性湍流大气中的抖动效应小于在各向同性湍流大气中的情况, 并且在远距离处大于拉盖尔高斯涡旋光束的抖动效应.
Abstract
The multiple random phase screen simulation method is used to simulate the anisotropic turbulent atmosphere and Bessel-Gaussian beam in intensity distribution, the on-axis scintillation and beam wander. The effects of anisotropic turbulence parameters and wave source parameters on the propagation quality of Bessel-Gasuuain beam are analyzed. The results show that the intensity distribution of Bessel-Gaussian beam in anisotropic turbulent atmosphere is related to the off-axis distance. Only the intensity value at the first ring decreases monotonously, while the intensity value at the other secondary rings increases first and then decreases. The on-axis scintillation index of the Bessel-Gaussian beam at close range decreases with the increase of the waveform parameter, and there is a trend of first rising, then falling and then rising with the increase of beam width. This phenomenon is related to the beam width of Bessel-Gaussian beam. The beam wander decreases with increases of the waveform parameter, the number of orbital angular momentum, the wavelength and the beam width. However, at a long distance, its on-axis scintillation index and beam wander effect are opposite to that of near distance, which is consistent with the sudden increase of the width of Bessel-Gaussian beam. The wander effect of Bessel-Gaussian beam in anisotropic turbulent atmosphere is significantly less than that in isotropic turbulence atmosphere, and the result even larger than Laguerre-Gaussian beam at long distance.
参考文献

[1] MCGLAMERY B L. Restoration of turbulence-degraded images[J]. Journal of the Optical Society of America, 1967, 57(3): 293-297.

[2] FLECK J A, MORRIS J R, FEIT M D. Time-dependent propagation of high energy laser beams through the atmosphere[J]. Applied Physics, 1976, 10 (2): 129-160.

[3] TOSELLI I, AGRAWAL B, RESTAINO S. Light propagation through anisotropic turbulence[J]. Journal of the Optical Society of America A, 2011, 28(3): 483-488.

[4] FONT C, SANTIAGO F, GILBREATH G C,et al. Implementation of a phase only spatial light modulator as an atmospheric turbulence simulator at 1550 nm[J]. Advances in Optical Technologies, 2014, 2014.

[5] TOSELLI I, KOROTKOVA O, XIAO X, et al. SLM-based laboratory simulations of Kolmogorov and non-Kolmogorov anisotropic turbulence[J]. Applied Optics, 2015, 54(15): 4740-4744.

[6] 柯熙政, 张林. 部分相干艾里光在大气湍流中的光束扩展与漂移[J]. 光子学报, 2017, 46(1): 0101003.

    KE Xi-zheng, ZHANG Lin. Beam spreading and wander of partially coherent Airy beam propagating in atmospheric turbulence[J]. Acta Photonica Sinica, 2017, 46(1): 0101003.

[7] HAFIZI B, SPRANGLE P. Diffraction effects in directed radiation beams[J].Journal of the Optical Society of America A, 1991, 8(5): 705-717.

[8] 柯熙政, 张宇. 部分相干光在大气湍流中的光强闪烁效应[J]. 光学学报, 2015, 35(1): 0106001.

    KE Xi-zheng, ZHANG Yu. Scintillation of partially coherent beam in atmospheric turbulence[J]. Acta Optica Sinica, 2015, 35(1): 0106001.

[9] CHENG Ming-jian, GUO Li-xin, LI Jiang-ting. Beam wander of Bessel-Gaussian beams in non-Kolmogorov turbulent atmosphere[C]. Applied Computational Electromagnetics Society Symposium, IEEE, 2017: 1-2.

[10] CHENG Ming-jian, GUO Li-xin, LI Jiang-ting, et al. Propagation properties of an optical vortex carried by a Bessel-Gaussian beam in anisotropic turbulence[J]. Journal of the Optical Society of America A, 2016, 33(8): 1442-1450.

[11] XU Ying, ZHU Yun, ZHANG Yi-xin. Crosstalk probability of the bandwidth-limited orbital angular momentum mode of Bessel Gaussian beams in marine-atmosphere turbulence[J]. Optics Communications, 2018, 427: 493-496.

[12] 李玉杰, 朱文越, 饶瑞中. 非Kolmogorov大气湍流随机相位屏模拟[J]. 红外与激光工程, 2016, 45(12): 1211001.

    LI Yu-jie, ZHU Wen-yue, RAO Rui-zhong. Simulation of random phase screen of non-Kolmogorov atmospheric turbulence[J]. Infrared and Laser Engineering, 2016, 45(12): 1211001.

[13] 饶瑞中. 现代大气光学[M]. 北京: 科学出版社, 2012.

[14] 徐灿. 基于涡旋光束的自由空间光通信系统传输性能研究[D]. 北京: 北京邮电大学. 2015.

[15] EYYUBGGLU H T, BAYKAL Y, SERMUTLU E, et al. Scintillation advantages of lowest order Bessel–Gaussian beams[J]. Applied Physics B, 2008, 92(2): 229.

[16] EYYUBGGLU H T, BAYKAL Y, SERMUTLU E,et al. Scintillation index of modified Bessel-Gaussian beams propagating in turbulent media[J]. Journal of the Optical Society of America A, 2009, 26(2): 387-394.

[17] PENG Juan, ZHANG Li, ZHANG Ke-cheng, et al. Channel capacity of OAM based FSO communication systems with partially coherent Bessel-Gaussian beams in anisotropic turbulence[J]. Optics Communications, 2018, 418: 32-36.

[18] CHENG Ming-jian, GUO Li-xin, LI Jiang-ting, et al. Effects of asymmetry atmospheric eddies on spreading and wander of Bessel-Gaussian beams in anisotropic turbulence[J]. IEEE Photonics Journal, 2018, 10(3): 6100510.

孙日东, 郭立新, 程明建, 闫旭, 李江挺. 贝塞尔高斯光束在各向异性湍流中的传输特性[J]. 光子学报, 2018, 47(12): 1201002. SUN Ri-dong, GUO Li-xin, CHENG Ming-jian, YAN Xu, LI Jiang-ting. Propagation Characteristics of Bessel-Gaussian Beam in Anisotropic Atmosphere[J]. ACTA PHOTONICA SINICA, 2018, 47(12): 1201002.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!