液晶与显示, 2020, 35 (7): 631, 网络出版: 2020-10-27   

近红外光响应液晶纳米智能材料

Near-infrared light-responsive intelligent liquid crystal nanocomposites
作者单位
天津大学 材料科学与工程学院, 天津 300350
摘要
随着人工智能的快速发展, 开发响应速度快、效率高、制备简单且易加工的智能材料具有重要的意义。近年来, 近红外光(Near-Infrared,NIR)响应液晶纳米智能材料受到研究人员的广泛关注。将具有近红外吸收特性的功能纳米材料与液晶智能材料复合, 制备近红外响应液晶纳米智能材料, 在可穿戴电子设备、仿生器件、软体机器人、生物医学器件等诸多方面都具有潜在应用。本文综述近年来在近红外响应液晶纳米光子晶体与液晶纳米致动器方面的重要研究进展。液晶纳米光子晶体是将功能纳米材料与手性液晶(如胆甾相和蓝相液晶)复合, 在红外光刺激下其结构色能够发生可逆变化; 液晶纳米致动器是将功能纳米材料与交联液晶聚合物复合, 在红外光刺激下智能液晶薄膜能够发生形状变化或宏观运动。最后讨论了近红外光响应液晶纳米智能材料在未来发展和潜在应用中存在的机遇和挑战。
Abstract
With the rapid development of artificial intelligence, it is of great significance to develop intelligent materials with fast response, high efficiency, and simple and easy processing. In recent years, researchers have been very interested in Near-Infrared (NIR) light-responsive intelligent liquid crystal nanocomposites. The marriage of NIR-absorbing nanomaterials with liquid crystals (LCs) can enable LC-based smart materials to respond to light stimuli in the NIR band, which holds promising applications in areas of wearable electronics, biomimetic machines, soft robotics and biomedical devices, etc. Herein, we provide a state-of-the-art account on the recent advancement in LC-based photonic crystals and smart actuators. LC-based photonic crystal is a composite of NIR-absorbing nanomaterials with chiral LCs such as cholesterics and blue phases, so that the photonic materials can respond in the NIR band to produce a structural color change; Nanostructured LC-actuator is a composite of NIR-absorbing nanomaterials with crosslinking liquid crystalline polymers, so that the smart liquid crystalline material can respond in the NIR band to enable a shape change or macroscopic locomotion. This review concludes with a perspective on the opportunities and challenges in the development of NIR light-responsive intelligent liquid crystal nanocomposites and their potential applications.
参考文献

[1] 于相龙, 周济.智能超材料研究与进展[J].材料工程, 2016, 44(7): 119-128.

    于相龙, 周济.智能超材料研究与进展[J].材料工程, 2016, 44(7): 119-128.

    YU X L, ZHOU J. Research advance in smart metamaterials [J]. Journal of Materials Engineering, 2016, 44(7): 119-128. (in Chinese)

    YU X L, ZHOU J. Research advance in smart metamaterials [J]. Journal of Materials Engineering, 2016, 44(7): 119-128. (in Chinese)

[2] 张新民.智能材料研究进展[J].玻璃钢/复合材料, 2013(6): 57-63.

    张新民.智能材料研究进展[J].玻璃钢/复合材料, 2013(6): 57-63.

    ZHANG X M. The research process of smart materials [J]. Fiber Reinforced Plastics/Composites, 2013(6): 57-63. (in Chinese)

    ZHANG X M. The research process of smart materials [J]. Fiber Reinforced Plastics/Composites, 2013(6): 57-63. (in Chinese)

[3] 俞燕蕾.基于液晶高分子的光响应智能形变材料[J].世界科学, 2012(10): 44-46.

    俞燕蕾.基于液晶高分子的光响应智能形变材料[J].世界科学, 2012(10): 44-46.

    YU Y L. Light-responseintelligent deformation material based on liquid crystal polymer [J]. World Science, 2012(10): 44-46. (in Chinese)

    YU Y L. Light-responseintelligent deformation material based on liquid crystal polymer [J]. World Science, 2012(10): 44-46. (in Chinese)

[4] 卿鑫, 吕久安, 俞燕蕾.光致形变液晶高分子[J].高分子学报, 2017(11): 1679-1705.

    卿鑫, 吕久安, 俞燕蕾.光致形变液晶高分子[J].高分子学报, 2017(11): 1679-1705.

    QING X, LV J A, YU Y L. Photodeformable liquid crystal polymers [J]. Acta Polymerica Sinica, 2017(11): 1679-1705. (in Chinese)

    QING X, LV J A, YU Y L. Photodeformable liquid crystal polymers [J]. Acta Polymerica Sinica, 2017(11): 1679-1705. (in Chinese)

[5] ANDRIENKO D. Introduction to liquid crystals [J]. Journal of Molecular Liquids, 2018, 267: 520-541.

    ANDRIENKO D. Introduction to liquid crystals [J]. Journal of Molecular Liquids, 2018, 267: 520-541.

[6] LIU J Q, GAO Y C, LEE Y J, et al. Responsive and foldable soft materials [J]. Trends in Chemistry, 2020, 2(2): 107-122.

    LIU J Q, GAO Y C, LEE Y J, et al. Responsive and foldable soft materials [J]. Trends in Chemistry, 2020, 2(2): 107-122.

[7] WANG L, LI Q. Photochromism into nanosystems: towards lighting up the future nanoworld [J]. Chemical Society Reviews, 2018, 47(3): 1044-1097.

    WANG L, LI Q. Photochromism into nanosystems: towards lighting up the future nanoworld [J]. Chemical Society Reviews, 2018, 47(3): 1044-1097.

[8] ZHENG Z G, LI Y N, BISOYI H K, et al. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light [J]. Nature, 2016, 531(7594): 352-356.

    ZHENG Z G, LI Y N, BISOYI H K, et al. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light [J]. Nature, 2016, 531(7594): 352-356.

[9] 冀彬, 马永正, 冯喜增.响应型液晶材料研究 [J].液晶与显示, 2008, 23(6): 700-706.

    冀彬, 马永正, 冯喜增.响应型液晶材料研究 [J].液晶与显示, 2008, 23(6): 700-706.

    JI B, MA Y Z, FENG X Z. Study of responsive liquid crystalline material [J].Chinese Journal of Liquid Crystals and Displays, 2008, 23(6): 700-706. (in Chinese)

    JI B, MA Y Z, FENG X Z. Study of responsive liquid crystalline material [J].Chinese Journal of Liquid Crystals and Displays, 2008, 23(6): 700-706. (in Chinese)

[10] BISOYI H K, URBAS A M, LI Q. Soft materials driven by photothermal effect and their applications [J]. Advanced Optical Materials, 2018, 6(15): 1800458.

    BISOYI H K, URBAS A M, LI Q. Soft materials driven by photothermal effect and their applications [J]. Advanced Optical Materials, 2018, 6(15): 1800458.

[11] WANG L. Self-activating liquid crystal devices for smart laser protection [J].Liquid Crystals, 2016, 43(13/15): 2062-2078.

    WANG L. Self-activating liquid crystal devices for smart laser protection [J].Liquid Crystals, 2016, 43(13/15): 2062-2078.

[12] WANG L, URBAS AM, LI Q. Nature-inspired emerging chiral liquid crystal nanostructures: from molecular self-assembly to DNA mesophase and nanocolloids [J].Advanced Materials, 2018, doi: 10.1002/adma.201801335.

    WANG L, URBAS AM, LI Q. Nature-inspired emerging chiral liquid crystal nanostructures: from molecular self-assembly to DNA mesophase and nanocolloids [J].Advanced Materials, 2018, doi: 10.1002/adma.201801335.

[13] WANG L, DONG H, LI Y N, et al. Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer [J]. Advanced Materials, 2015, 27(12): 2065-2069.

    WANG L, DONG H, LI Y N, et al. Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer [J]. Advanced Materials, 2015, 27(12): 2065-2069.

[14] WANG L, DONG H, LI Y N, et al. Reversible near-infrared light directed reflection in a self-organized helical superstructure loaded with upconversion nanoparticles [J]. Journal of the American Chemical Society, 2014, 136(12): 4480-4483.

    WANG L, DONG H, LI Y N, et al. Reversible near-infrared light directed reflection in a self-organized helical superstructure loaded with upconversion nanoparticles [J]. Journal of the American Chemical Society, 2014, 136(12): 4480-4483.

[15] WANG L, GUTIERREZ-CUEVAS K G, URBAS A, et al. Near-infrared light-directed handedness inversion in plasmonic nanorod-embedded helical superstructure [J]. Advanced Optical Materials, 2016, 4(2): 247-251.

    WANG L, GUTIERREZ-CUEVAS K G, URBAS A, et al. Near-infrared light-directed handedness inversion in plasmonic nanorod-embedded helical superstructure [J]. Advanced Optical Materials, 2016, 4(2): 247-251.

[16] GUTIERREZ-CUEVAS K G, WANG L, XUE C M, et al. Near infrared light-driven liquid crystal phase transition enabled by hydrophobic mesogen grafted plasmonic gold nanorods [J]. Chemical Communications, 2015, 51(48): 9845-9848.

    GUTIERREZ-CUEVAS K G, WANG L, XUE C M, et al. Near infrared light-driven liquid crystal phase transition enabled by hydrophobic mesogen grafted plasmonic gold nanorods [J]. Chemical Communications, 2015, 51(48): 9845-9848.

[17] WANG L, BISOYI H K, ZHENG Z G, et al. Stimuli-directed self-organized chiral superstructures for adaptive windows enabled by mesogen-functionalized graphene [J]. Materials Today, 2017, 20(5): 230-237.

    WANG L, BISOYI H K, ZHENG Z G, et al. Stimuli-directed self-organized chiral superstructures for adaptive windows enabled by mesogen-functionalized graphene [J]. Materials Today, 2017, 20(5): 230-237.

[18] WANG H H, LIU B Z, WANG L, et al. Graphene glass inducing multidomain orientations in cholesteric liquid crystal devices toward wide viewing angles [J]. ACS Nano, 2018, 12(7): 6443-6451.

    WANG H H, LIU B Z, WANG L, et al. Graphene glass inducing multidomain orientations in cholesteric liquid crystal devices toward wide viewing angles [J]. ACS Nano, 2018, 12(7): 6443-6451.

[19] GUTIERREZ-CUEVAS K G, WANG L, ZHENG Z G, et al. Frequency-driven self-organized helical superstructures loaded with mesogen-grafted silica nanoparticles [J]. Angewandte Chemie International Edition, 2016, 55(42): 13090-13094.

    GUTIERREZ-CUEVAS K G, WANG L, ZHENG Z G, et al. Frequency-driven self-organized helical superstructures loaded with mesogen-grafted silica nanoparticles [J]. Angewandte Chemie International Edition, 2016, 55(42): 13090-13094.

[20] WANG L, LI Q. Stimuli-directing self-organized 3D liquid-crystalline nanostructures: from materials design to photonic applications [J].Advanced Functional Materials, 2016, 26(1): 10-28.

    WANG L, LI Q. Stimuli-directing self-organized 3D liquid-crystalline nanostructures: from materials design to photonic applications [J].Advanced Functional Materials, 2016, 26(1): 10-28.

[21] 刘桢, 沈冬, 王骁乾, 等.蓝相液晶材料与光子学器件研究进展[J].液晶与显示, 2017, 32(5): 325-338.

    刘桢, 沈冬, 王骁乾, 等.蓝相液晶材料与光子学器件研究进展[J].液晶与显示, 2017, 32(5): 325-338.

    LIU Z, SHEN D, WANG X Q,et al. Progresses on the researches of blue phase liquid crystal materials and photonic devices [J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(5): 325-338. (in Chinese)

    LIU Z, SHEN D, WANG X Q,et al. Progresses on the researches of blue phase liquid crystal materials and photonic devices [J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(5): 325-338. (in Chinese)

[22] 何万里, 王玲, 王乐, 等.宽温域蓝相液晶材料[J].化学进展, 2012, 24(1): 182-192.

    何万里, 王玲, 王乐, 等.宽温域蓝相液晶材料[J].化学进展, 2012, 24(1): 182-192.

    HE W L, WANG L, WANG L, et al. Wide temperature range blue phase liquid crystalline materials [J]. Progress in Chemistry, 2012, 24(1): 182-192. (in Chinese)

    HE W L, WANG L, WANG L, et al. Wide temperature range blue phase liquid crystalline materials [J]. Progress in Chemistry, 2012, 24(1): 182-192. (in Chinese)

[23] CHEN Y, WU S T. Recent advances on polymer-stabilized blue phase liquid crystal materials and devices [J]. Journal of Applied Polymer-Science, 2014, 131(13): 40556.

    CHEN Y, WU S T. Recent advances on polymer-stabilized blue phase liquid crystal materials and devices [J]. Journal of Applied Polymer-Science, 2014, 131(13): 40556.

[24] LI Y, HUANG S J, ZHOU P C, et al. Polymer-stabilized blue phase liquid crystals for photonic applications [J]. Advanced Materials Technologies, 2016, 1(8): 1600102.

    LI Y, HUANG S J, ZHOU P C, et al. Polymer-stabilized blue phase liquid crystals for photonic applications [J]. Advanced Materials Technologies, 2016, 1(8): 1600102.

[25] WANG M, ZOU C, SUN J,et al. Asymmetric tunable photonic bandgaps in self-organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity [J]. Advanced Functional Materials, 2017, 27(46): 1702261.

    WANG M, ZOU C, SUN J,et al. Asymmetric tunable photonic bandgaps in self-organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity [J]. Advanced Functional Materials, 2017, 27(46): 1702261.

[26] WANG L, HE W L, XIAO X, et al. Hysteresis-free blue phase liquid-crystal-stabilized by Zns nanoparticles [J]. Small, 2012, 8(14): 2189-2193.

    WANG L, HE W L, XIAO X, et al. Hysteresis-free blue phase liquid-crystal-stabilized by Zns nanoparticles [J]. Small, 2012, 8(14): 2189-2193.

[27] LIN T H, LI Y N, WANG C T, et al. Red, green and blue reflections enabled in an optically tunable self-organized 3D cubic nanostructured thin film [J]. Advanced Materials, 2013, 25(36): 5050-5054.

    LIN T H, LI Y N, WANG C T, et al. Red, green and blue reflections enabled in an optically tunable self-organized 3D cubic nanostructured thin film [J]. Advanced Materials, 2013, 25(36): 5050-5054.

[28] CHEN X W, WANG L, LI C Y, et al. Light-controllable reflection wavelength of blue phase liquid crystals doped with azobenzene-dimers [J]. Chemical Communications, 2013, 49(86): 10097-10099.

    CHEN X W, WANG L, LI C Y, et al. Light-controllable reflection wavelength of blue phase liquid crystals doped with azobenzene-dimers [J]. Chemical Communications, 2013, 49(86): 10097-10099.

[29] WANG L, GUTIERREZ-CUEVAS K G, BISOYI H K, et al. Nir light-directing self-organized 3D photonic superstructures loaded with anisotropic plasmonic hybrid nanorods [J]. Chemical Communications, 2015, 51(81): 15039-15042.

    WANG L, GUTIERREZ-CUEVAS K G, BISOYI H K, et al. Nir light-directing self-organized 3D photonic superstructures loaded with anisotropic plasmonic hybrid nanorods [J]. Chemical Communications, 2015, 51(81): 15039-15042.

[30] 刘玉云, 俞燕蕾.光致形变液晶弹性体的研究进展[J].自然杂志, 2013, 35(2): 127-134.

    刘玉云, 俞燕蕾.光致形变液晶弹性体的研究进展[J].自然杂志, 2013, 35(2): 127-134.

    LIU Y Y, YU Y L. Photo-induced deformation of liquid crystalline elastomers [J]. Chinese Journal of Nature, 2013, 35(2): 127-134. (in Chinese)

    LIU Y Y, YU Y L. Photo-induced deformation of liquid crystalline elastomers [J]. Chinese Journal of Nature, 2013, 35(2): 127-134. (in Chinese)

[31] PANG X L, LV J A, ZHU C Y, et al. Photodeformable azobenzene-containing liquid crystal polymers and soft actuators [J]. Advanced Materials, 2019, 31(52): 1904224.

    PANG X L, LV J A, ZHU C Y, et al. Photodeformable azobenzene-containing liquid crystal polymers and soft actuators [J]. Advanced Materials, 2019, 31(52): 1904224.

[32] YU H F, IKEDA T. Photocontrollable liquid-crystalline actuators [J]. Advanced Materials, 2011, 23(19): 2149-2180.

    YU H F, IKEDA T. Photocontrollable liquid-crystalline actuators [J]. Advanced Materials, 2011, 23(19): 2149-2180.

[33] DONG L L, ZHAO Y. Photothermally driven liquid crystal polymer actuators [J]. Materials Chemistry Frontiers, 2018, 2(11): 1932-1943.

    DONG L L, ZHAO Y. Photothermally driven liquid crystal polymer actuators [J]. Materials Chemistry Frontiers, 2018, 2(11): 1932-1943.

[34] ZUO B, WANG M, LIN B P, et al. Visible and infrared three-wavelength modulated multi-directional actuators [J]. Nature Communications, 2019, 10(1): 4539.

    ZUO B, WANG M, LIN B P, et al. Visible and infrared three-wavelength modulated multi-directional actuators [J]. Nature Communications, 2019, 10(1): 4539.

[35] 邹小波, 史永强, 郑悦, 等.基于荧光共振能量转移的金纳米粒子/碳量子点荧光纳米探针检测精氨酸[J].分析化学, 2018, 46(6): 960-968.

    邹小波, 史永强, 郑悦, 等.基于荧光共振能量转移的金纳米粒子/碳量子点荧光纳米探针检测精氨酸[J].分析化学, 2018, 46(6): 960-968.

    ZOU X B, SHI Y Q, ZHENG Y, et al. Detection of arginine by AuNPs/CQDs nanoprobes based on fluorescence resonance energy transfer effect [J]. Chinese Journal of Analytical Chemistry, 2018, 46(6): 960-968. (in Chinese)

    ZOU X B, SHI Y Q, ZHENG Y, et al. Detection of arginine by AuNPs/CQDs nanoprobes based on fluorescence resonance energy transfer effect [J]. Chinese Journal of Analytical Chemistry, 2018, 46(6): 960-968. (in Chinese)

[36] LU X L, ZHANG H, FEI G X, et al. Liquid-crystalline dynamic networks doped with gold nanorods showing enhanced photocontrol of actuation [J]. Advanced Materials, 2018, 30(14): 1706597.

    LU X L, ZHANG H, FEI G X, et al. Liquid-crystalline dynamic networks doped with gold nanorods showing enhanced photocontrol of actuation [J]. Advanced Materials, 2018, 30(14): 1706597.

[37] HAUSER A W, LIU D Q, BRYSON K C, et al. Reconfiguring nanocomposite liquid crystal polymer films with visible light [J]. Macromolecules, 2016, 49(5): 1575-1581.

    HAUSER A W, LIU D Q, BRYSON K C, et al. Reconfiguring nanocomposite liquid crystal polymer films with visible light [J]. Macromolecules, 2016, 49(5): 1575-1581.

[38] KIM H, LEE J A, AMBULO C P, et al. Intelligently actuating liquid crystal elastomer-carbon nanotube composites [J]. Advanced Functional Materials, 2019, 29(48): 1905063.

    KIM H, LEE J A, AMBULO C P, et al. Intelligently actuating liquid crystal elastomer-carbon nanotube composites [J]. Advanced Functional Materials, 2019, 29(48): 1905063.

[39] PEI Z Q, YANG Y, CHEN Q M, et al. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds [J]. Nature Materials, 2014, 13(1): 36-41.

    PEI Z Q, YANG Y, CHEN Q M, et al. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds [J]. Nature Materials, 2014, 13(1): 36-41.

[40] YANG Y, PEI Z Q, LI Z, et al. Making and remaking dynamic 3D structures by shining light on flat liquid crystalline vitrimer films without a mold [J]. Journal of the American Chemical Society, 2016, 138(7): 2118-2121.

    YANG Y, PEI Z Q, LI Z, et al. Making and remaking dynamic 3D structures by shining light on flat liquid crystalline vitrimer films without a mold [J]. Journal of the American Chemical Society, 2016, 138(7): 2118-2121.

[41] LIU J Q, GAO Y C, WANG H H, et al. Shaping and locomotion of soft robots using filament actuators made from liquid crystal elastomer-carbon nanotube composites [J]. Advanced Intelligent Systems, 2020, doi: 10.1002/aisy.201900163.

    LIU J Q, GAO Y C, WANG H H, et al. Shaping and locomotion of soft robots using filament actuators made from liquid crystal elastomer-carbon nanotube composites [J]. Advanced Intelligent Systems, 2020, doi: 10.1002/aisy.201900163.

[42] 王飞, 贾书海, 唐振华, 等.石墨烯纳米复合材料光驱动技术的研究进展[J].材料工程, 2018, 46(4): 12-22.

    王飞, 贾书海, 唐振华, 等.石墨烯纳米复合材料光驱动技术的研究进展[J].材料工程, 2018, 46(4): 12-22.

    WANG F, JIA S H, TANG Z H, et al. Research progress on light-driven technology for graphene-based nanocomposites [J]. Journal of Materials Engineering, 2018, 46(4): 12-22. (in Chinese)

    WANG F, JIA S H, TANG Z H, et al. Research progress on light-driven technology for graphene-based nanocomposites [J]. Journal of Materials Engineering, 2018, 46(4): 12-22. (in Chinese)

[43] 严平, 李在均.双功能石墨烯量子点的制备及在pH荧光检测和细胞成像中的应用[J].分析化学, 2018, 46(5): 670-677.

    严平, 李在均.双功能石墨烯量子点的制备及在pH荧光检测和细胞成像中的应用[J].分析化学, 2018, 46(5): 670-677.

    YAN P, LI Z J. Synthesis of bifunctional graphene quantum dots and its application in fluorescence detection of PH and cell imaging [J]. Chinese Journal of Analytical Chemistry, 2018, 46(5): 670-677. (in Chinese)

    YAN P, LI Z J. Synthesis of bifunctional graphene quantum dots and its application in fluorescence detection of PH and cell imaging [J]. Chinese Journal of Analytical Chemistry, 2018, 46(5): 670-677. (in Chinese)

[44] DONG L L, TONG X, ZHANG H J, et al. Near-infrared light-driven locomotion of a liquid crystal polymer trilayer actuator [J]. Materials Chemistry Frontiers, 2018, 2(7): 1383-1388.

    DONG L L, TONG X, ZHANG H J, et al. Near-infrared light-driven locomotion of a liquid crystal polymer trilayer actuator [J]. Materials Chemistry Frontiers, 2018, 2(7): 1383-1388.

[45] WEI W Y, ZHANG Z W, WEI J, et al. Phototriggered selective actuation and self-oscillating in dual-phase liquid crystal photonic actuators [J]. Advanced Optical Materials, 2018, 6(15): 1800131.

    WEI W Y, ZHANG Z W, WEI J, et al. Phototriggered selective actuation and self-oscillating in dual-phase liquid crystal photonic actuators [J]. Advanced Optical Materials, 2018, 6(15): 1800131.

[46] ZHANG L S, PAN J K, LIU Y H, et al. NIR-UV Responsive actuator with graphene oxide/microchannel-induced liquid crystal bilayer structure for biomimetic devices [J]. ACS Applied Materials & Interfaces, 2020, 12(5): 6727-6735.

    ZHANG L S, PAN J K, LIU Y H, et al. NIR-UV Responsive actuator with graphene oxide/microchannel-induced liquid crystal bilayer structure for biomimetic devices [J]. ACS Applied Materials & Interfaces, 2020, 12(5): 6727-6735.

[47] LIU M Y, ZENG G J, WANG K, et al. Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications [J]. Nanoscale, 2016, 8(38): 16819-16840.

    LIU M Y, ZENG G J, WANG K, et al. Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications [J]. Nanoscale, 2016, 8(38): 16819-16840.

[48] LAN R C, SUN J, SHEN C, et al. Near-infrared photodriven self-sustained oscillation of liquid-crystalline network film with predesignated polydopamine coating [J]. Advanced Materials, 2020, doi: 10.1002/adma.201906319.

    LAN R C, SUN J, SHEN C, et al. Near-infrared photodriven self-sustained oscillation of liquid-crystalline network film with predesignated polydopamine coating [J]. Advanced Materials, 2020, doi: 10.1002/adma.201906319.

[49] QIAN X J, CHEN Q M, YANG Y, et al. Untethered recyclable tubular actuators with versatile locomotion for soft continuum robots [J]. Advanced Materials, 2018, 30(29): 1801103.

    QIAN X J, CHEN Q M, YANG Y, et al. Untethered recyclable tubular actuators with versatile locomotion for soft continuum robots [J]. Advanced Materials, 2018, 30(29): 1801103.

[50] TIAN H M, WANG Z J, CHEN Y L, et al. Polydopamine-coated main-chain liquid crystal elastomer as optically driven artificial muscle [J]. ACS Applied Materials & Interfaces, 2018, 10(9): 8307-8316.

    TIAN H M, WANG Z J, CHEN Y L, et al. Polydopamine-coated main-chain liquid crystal elastomer as optically driven artificial muscle [J]. ACS Applied Materials & Interfaces, 2018, 10(9): 8307-8316.

[51] LI Z, YANG Y, WANG Z H, et al. Polydopamine nanoparticles doped in liquid crystal elastomers for producing dynamic 3D structures [J]. Journal of Materials Chemistry A, 2017, 5(14): 6740-6746.

    LI Z, YANG Y, WANG Z H, et al. Polydopamine nanoparticles doped in liquid crystal elastomers for producing dynamic 3D structures [J]. Journal of Materials Chemistry A, 2017, 5(14): 6740-6746.

[52] 王明丽, 孙亚楠, 郭佳怡, 等.硫化镉量子点对三联吡啶钌电化学发光的增敏作用及用于邻苯二酚的检测[J].分析化学, 2018, 46(5): 780-786.

    王明丽, 孙亚楠, 郭佳怡, 等.硫化镉量子点对三联吡啶钌电化学发光的增敏作用及用于邻苯二酚的检测[J].分析化学, 2018, 46(5): 780-786.

    WANG M L, SUN Y N, GUO J Y, et al. Amplification effect of CdS quantum dots on electrogenerated chemiluminescence of and its application in determination of catechol [J]. Chinese Journal of Analytical Chemistry, 2018, 46(5): 780-786. (in Chinese)

    WANG M L, SUN Y N, GUO J Y, et al. Amplification effect of CdS quantum dots on electrogenerated chemiluminescence of and its application in determination of catechol [J]. Chinese Journal of Analytical Chemistry, 2018, 46(5): 780-786. (in Chinese)

[53] JIANG Z, XU M, LI F Y, et al. Red-light-controllable liquid-crystal soft actuators via low-power excited upconversion based on triplet-triplet annihilation [J]. Journal of the American Chemical Society, 2013, 135(44): 16446-16453.

    JIANG Z, XU M, LI F Y, et al. Red-light-controllable liquid-crystal soft actuators via low-power excited upconversion based on triplet-triplet annihilation [J]. Journal of the American Chemical Society, 2013, 135(44): 16446-16453.

[54] WU W, YAO L M, YANG T S, et al. NIR-light-induced deformation of cross-linked liquid-crystal polymers using upconversion nanophosphors [J]. Journal of the American Chemical Society, 2011, 133(40): 15810-15813.

    WU W, YAO L M, YANG T S, et al. NIR-light-induced deformation of cross-linked liquid-crystal polymers using upconversion nanophosphors [J]. Journal of the American Chemical Society, 2011, 133(40): 15810-15813.

杨梦园, 杨潇, 封伟, 王玲. 近红外光响应液晶纳米智能材料[J]. 液晶与显示, 2020, 35(7): 631. YANG Meng-yuan, YANG Xiao, FENG Wei, WANG Ling. Near-infrared light-responsive intelligent liquid crystal nanocomposites[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(7): 631.

本文已被 12 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!