红外与激光工程, 2018, 47 (12): 1230008, 网络出版: 2019-01-10   

典型滤波器对星载高光谱分辨率激光雷达532 nm通道回波信号的影响

Effect of typical filters on return signals of spaceborne HRSL channel at 532 nm
作者单位
1 成都信息工程大学 电子工程学院, 四川 成都 610225
2 中国气象局国家卫星气象中心, 北京 100081
摘要
高光谱分辨率激光雷达(High Spectral Resolution Lidar, HSRL)系统利用窄带滤波器将激光雷达回波信号中的大气粒子(云或气溶胶)散射和分子散射成分分开, 提升了云或气溶胶光学特性的反演质量。提出了一种基于HSRL探测原理的HSRL回波信号模拟方法, 其原理是利用CALIPSO云/气溶胶消光系数产品和数值天气预报数据被用来仿真星载HSRL 532 nm回波信号。两种典型的窄带光谱滤波器: FPI(Fabry-Pérot Interferometer)和碘吸收滤波器, 作为分子通道滤波器的性能通过仿真的星载HSRL回波信号进行分析。对三种典型: 晴空、卷云、气溶胶(两层厚云)的HSRL回波廓线进行详细的敏感分析表明碘分子吸收滤波器的性能明显优于FPI滤波器, 其中碘吸收滤波能保持可以忽略不计的相对偏差(<4.0×10-3%), 这是由低光学厚度(<1.0)的粒子后向散射效应引起的。但是, 如果FPI滤波器的粒子后向散射透过率能保持在10-3水平以下, 其仍不失为是一个好的选择。
Abstract
The future high spectral resolution lidar(HSRL) system employs a narrow spectral filter to separate the particulate(cloud/aerosol) and molecular scattering components in the lidar return signals, which improves the quality of the retrieved cloud/aerosol optical properties. A simulation method of HSRL return signal based on HSRL detection principle was presented. The principle was that the CALIPSO cloud/aerosol extinction coefficient product and numerical weather forecast data were used to simulate the spaceborne HSRL 532 nm return signal. The performance of two typical spectral filters, i.e., Fabry-Pérot interferometric(FPI) and iodine absorption filters, were analyzed using the simulated spaceborne HSRL return signals when they used as spaceborne HSRL molecular channel filter. The sensitivity analysis of three typical HSRL echo profiles(clear sky, cirrus cloud, aerosol, two-layer thick cloud) shows that the performance of iodine absorption filter was obviously better than that of FPI filter. The iodine absorption filter can maintain negligible relative deviation (<4.0×10-3%), which was caused by the backward scattering effect of particles with low optical thickness(<1.0). However, an FPI filter would still be a good choice for spaceborne HSRL systems if its particulate backscattering transmittance can be maintained below a level of 10-3.
参考文献

[1] Winker D M, Couch R H, Mccormick M P. An overview of LITE: NASA′s lidar in-space technology experiment[J]. Proceedings of the IEEE, 1996, 84(2): 164-180.

[2] Winker D M, Pelon J R, Mccormick M P. The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds[C]//International Asia-Pacific Environmental Remote Sensing, Remote Sensing of the Atmosphere, Ocean, Environment, and Space. International Society for Optics and Photonics, 2003: 1211-1229.

[3] 鲁先洋, 李学彬, 秦武斌, 等. 微脉冲激光雷达反演气溶胶的水平分布[J]. 光学 精密工程, 2017, 25(7): 1697-1704.

    Lu Xianyang, Li Xuebin, Qin Wubin, et al. Retrieval of horizontal distribution of aerosol mass concentration by micro pulse lidar[J]. Optics and Precision Engineering, 2017, 25(7): 1697-1704. (in Chinese)

[4] Winker D M, Hunt W H, Mcgill M J. Initial performance assessment of CALIOP[J]. Geophysical Research Letters, 2007, 34(19): 228-262.

[5] Min M, Wang P, Campbell J R, et al. Midlatitude cirrus cloud radiative forcing over China[J]. Journal of Geophysical Research Atmospheres, 2010, 115(D20): 898-907.

[6] Pan H, Bu L, Kumar K R, et al. A new retrieval method for the ice water content of cirrus using data from the CloudSat and CALIPSO[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 161(7): 134-142.

[7] 单坤玲, 刘新波, 卜令兵,等. 激光雷达和毫米波雷达的卷云微物理特性的联合反演方法[J]. 红外与激光工程, 2015, 44(9): 2742-2746.

    Shan Kunling, Liu Xinbo, Bu Lingbing, et al. Joint inversion method of cirrus physical properties using both Lidar and millimeter wave radar[J]. Infrared and Laser Engineering, 2015, 44(9): 2742-2746. (in Chinese)

[8] Fernald F G. Analysis of atmospheric lidar observations: some comments[J]. Applied Optics, 1984, 23(5): 000652.

[9] 丁红星, 戴丽莉, 孙东松. 激光雷达斜程探测的对流层气溶胶空间分布[J]. 红外与激光工程, 2010, 39(3): 442-446.

    Ding Hongxing, Dai Liling, Sun Dongsong. Spatial distribution of aerosol in troposphere measured by lidar at slant range[J]. Infrared and Laser Engineering, 2010, 39(3): 442-446. (in Chinese)

[10] Omar A H, Winker D M, Kittaka C, et al. The CALIPSO automated aerosol classification and lidar ratio selection algorithm[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(10): 1994-2014.

[11] Shipley S T, Tracy D H, Eloranta E W, et al. A high spectral resolution lidar to measure optical scattering properties of atmospheric aerosols, Part I: Instrumentation and theory[J]. Applied Optics, 1984, 22(23): 3716-3724.

[12] Grund C J, Eloranta E W. University of wisconsin high spectral resolution lidar[J]. Optical Engineering, 1991, 30(30): 6-12.

[13] Liu D, Hostetler C, Miller I, et al. System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar[J]. Optics Express, 2012, 20(2): 1406.

[14] She C Y, Alvarez Ii R J, Caldwell L M, et al. High-spectral-resolution Rayleigh-Mie lidar measurement of aerosol and atmospheric profiles[J]. Applied Physics B, 1992, 17(7): 541-543.

[15] Liu Z, Matsui I, Sugimoto N. High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements[J]. Optical Engineering, 1999, 38(10): 1661-1670.

[16] Silva A, Swap R, Maring H, et al. ACE 2011-2015 progress report and future outlook[D]. US: NASA, 2017.

[17] Eloranta E W, Roesler F L, Sroga J T. High Spectral Resolution Lidar[M]. Berlin: Springer, 1983: 308-315.

[18] Vaughan M A, Powell K A, Kuehn R E, et al. Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(10): 2034-2050.

[19] Jursa A S. Handbook of geophysics and the space environment[D]. Germany: Research Gate, 1985.

[20] Bodhaine B A, Wood N B, Dutton E G, et al. On Rayleigh optical depth calculations[J]. Journal of Atmospheric and Oceanic Technology, 1999, 16(11): 1854-1861.

[21] Cairo F, Di D G, Adriani A, et al. Comparison of various linear depolarization parameters measured by lidar[J]. Applied Optics, 1999, 38(21): 4425-4432.

[22] Serdyuchenko A, Gorshelev V, Weber M, et al. New broadband high-resolution ozone absorption crosssections[J]. Spectroscopy Europe, 2011(6): confETE11S.

[23] Liu Z, Voelger P, Sugimoto N. Simulations of the observation of clouds and aerosols with the experimental lidar in space Equipment system[J]. Applied Optics, 2000, 39(18): 3120-3137.

[24] Hernandez G. Analytical description of a Fabry-Perot photoelectric spectrometer[J]. Applied Optics, 1966, 5(11): 1745-1748.

[25] Forkey J N, Lempert W R, Miles R B. Corrected and calibrated I2 absorption model at frequency-doubled Nd: YAG laser wavelengths[J]. Applied Optics, 1997, 36(27): 6729-6738.

[26] Esselborn M, Wirth M, Fix A, et al. Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients[J]. Applied Optics, 2008, 47(3): 346-358.

[27] Cheng Z, Liu D, Yang Y, et al. Interferometric filters for spectral discrimination in high-spectral-resolution lidar: performance comparisons between Fabry-Perot interferometer and field-widened Michelson interferometer[J]. Applied Optics, 2013, 52(32): 7838-7850.

[28] Hair J W, Hostetler C A, Cook A L, et al. Airborne high spectral resolution lidar for profiling aerosol optical properties[J]. Applied Optics, 2008, 47(36): 6734-6752.

[29] Bu L, Pan H, Kumar K R, et al. LIDAR and millimeter-wave cloud RADAR(MWCR) techniques for joint observations of cirrus in Shouxian (32.56°N, 116.78°E), China[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2016, 148: 64-73.

余骁, 闵敏, 张兴赢, 孟晓阳, 邓小波. 典型滤波器对星载高光谱分辨率激光雷达532 nm通道回波信号的影响[J]. 红外与激光工程, 2018, 47(12): 1230008. Yu Xiao, Min Min, Zhang Xingying, Meng Xiaoyang, Deng Xiaobo. Effect of typical filters on return signals of spaceborne HRSL channel at 532 nm[J]. Infrared and Laser Engineering, 2018, 47(12): 1230008.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!