中国激光, 2013, 40 (3): 0305003, 网络出版: 2013-02-01   

基于数字信号处理机的水下光通信收发系统设计及分析

Design and Analysis of Underwater Optical Communication Transceiver System Based on Digital Signal Processor
作者单位
中国科学院上海光学精密机械研究所, 空间激光信息技术研究中心, 上海市全固态激光器及应用技术重点实验室, 上海 201800
摘要
设计了一种基于数字信号处理机(DSP)的高速高可靠性水下光通信收发系统,并分析了调制时序和信号处理过程。在收发机中,DSP完成待发送信息的里德所罗门码编码和接收信息的滤波、门限判决、解调解码,现场可编程门阵列(FPGA)完成编码后信息的脉冲位置调制(PPM)。针对激光脉冲水下传输后脉宽展宽小于100 ns,激光重复频率偏离均值小于15%的情况,讨论了不同伽罗华域和PPM信息发送速率的关系;分析了收发机的各环节信号处理速度和各接口通信速度。结果表明,收发系统能够实现全双工的实时通信,通信速率可达73 kbit/s,可用于实时传输语音和图像等多媒体信息。最后利用Matlab对激光脉冲在Ⅱ类水质中传输100 m后到的激光脉冲形状进行了仿真,同时对FPGA发送的一帧数据的电平时序以及模数转换器(ADC)采样得到的一帧数据的采样序列进行了模拟。设计的收发系统为今后水下光通信系统的设计与实现提供了一定的参考。
Abstract
A high speed and high reliable underwater optical communication transceiver system based on digital signal processor (DSP) is proposed, and the modulation timing sequence and signal processing procedure is analyzed. In the transmitter, the DSP accomplishes Reed-Solomon codes encoding of the information need to be sent and filtering, threshold decision, the decoding and demodulation of the received information. The field-programmable gate array (FPGA) accomplishes the modulation of the information encoded in the DSP. Under the condition that the pulse width after underwater propagation is less than 100 ns and the frequency deviation from the mean is less than 15%, the dependence of the pulse position modulation (PPM) modulation rate on the chosen Galois field is discussed and the signal processing speed as well as the interfaces communication speed are analyzed. The analytical results show that the designed transmitter system can accomplish full-duplex and real time communication with a speed as high as 73 kbit/s, which can be used for real-time communication of multi-media information, such as voice and images. The pulse shape of laser after a propagation of 100 m in case Ⅱ water is simulated through Matlab as well as the timing sequence of a frame of data transmitted through FPGA and sampled sequence of a frame of data obtained through analog-to-digital converter (ADC). The structure of the designed transceiver provides a certain reference to the design and accomplishment of underwater optical communication system in the future.
参考文献

[1] 王广聪, 董淑福, 温东 等. 海水中蓝绿激光传输特性研究[J]. 电子技术, 2010, (3): 68~70

    Wang Guangcong, Dong Shufu, Wen Dong et al.. Research on blue-green laser transmission in seawater[J]. Electronic Technology, 2010, (3): 68~70

[2] R. M. Lerner, J. D. Summers. Monte Carlo description of time- and space-resolved multiple forward scatter in natural water[J]. Appl. Opt., 1982, 21(5): 861~869

[3] W. Wei, X. H. Zhang, J. H. Rao et al.. Time domain dispersion of underwater optical wireless communication[J]. Chin. Opt. Lett., 2011, 9(3): 030101

[4] X. Liu, S. K. Ryu, J. H. Kim. Optimization model of a wireless optical system with pulse position modulation[J]. Opt. Engng., 2010, 49(8): 085004

[5] 胡昊, 王红星, 孙晓明 等. 基于脉冲位置调制的无线光通信多级编码调制及其多阶段解调译码算法[J]. 中国激光, 2012, 39(4): 0405006

    Hu Hao, Wang Hongxing, Sun Xiaoming et al.. Multilevel coded modulation of free space optical communication based on pulse position modulation with multi-step demodulation and decoding algorithm[J]. Chinese J. Lasers, 2012, 39(4): 0405006

[6] F. Xu, M. A. Khalighi, S. Bourennane. Pulse position modulation for FSO systems: capacity and channel coding[J]. J. Opt. Commun. Netw., 2009, 1(5): 404~415

[7] D. O. Caplan. Laser communication transmitter and receiver design[J]. Journal of Optical and Fiber Communications Reports, 2007, 4(4-5): 225~362

[8] 周田华, 何宁, 敖发良. 水下光通信PPM数字接收机的DSP实现[J]. 光学技术, 2006, 32(Suppl): 607~609

    Zhou Tianhua, He Ning, Ao Faliang. The realization of PPM digital receiver with DSP in underwater optical communication[J]. Optical Technique, 2006, 32(Suppl): 607~609

[9] 丁德强, 柯熙政. 大气激光通信PPM调制解调系统设计与仿真研究[J]. 光通信技术, 2005, 29(1): 50~52

    Ding Deqiang, Ke Xizheng. Design of PPM for laser communication in atmosphere[J]. Optical Communication Technology, 2005, 29(1): 50~52

[10] J. Sankaran. Reed Solomon decoder: TMS320C64x implementation[EB/OL]. http://www.ti.com.cn/

[11] 魏巍, 张晓晖, 饶炯辉 等. 水下无线光通信接收光功率的计算研究[J]. 中国激光, 2011, 38(9): 0905002

    Wei Wei, Zhang Xiaohui, Rao Jionghui et al.. Study on computing the receiving optical power in underwater optical wireless communication[J]. Chinese J. Lasers, 2011, 38(9): 0905002

[12] 梁波, 朱海, 陈卫标. 大气到海洋激光通信信道仿真[J]. 光学学报, 2007, 27(7): 1166~1172

    Liang Bo, Zhu Hai, Chen Weibiao. Simulation of laser communication channel from atmosphere to ocean[J]. Acta Optica Sinica, 2007, 27(7): 1166~1172

[13] 周亚民, 吴克起, 陈金来 等. 激光脉冲水下传输时域展宽的蒙特卡洛模拟[J]. 激光与红外, 2011, 41(3): 259~263

    Zhou Yamin, Wu Keqi, Chen Jinlai et al.. Monte Carlo simulation of time-domain broadening of laser pulse propagating underwater[J]. Laser & Infrared, 2011, 41(3): 259~263

[14] K. I. Gjerstad, J. J. Stamnes, B. Hamre et al.. Monte Carlo and discrete-ordinate simulations of irradiances in the coupled atmosphere-ocean system[J]. Appl. Opt., 2003, 42(15): 2609~2622

[15] H. Tang, X. L. Zhu, J. Q. Meng et al.. 20-kHz watt-level green laser with LGS crystal electro-optic Q-switch[J]. Chin. Opt. Lett., 2009, 7(9): 812~814

[16] 张云昌, 张令弥, 赵健洋. 基于McBSP的TMS320C6713异步串行通信的实现[J]. 电子科技, 2009, 22(7): 55~58

    Zhang Yunchang, Zhang Lingmi, Zhao Jianyang. Realization of TMS320C6713′s UART communication based on McBSP[J]. Electronic Sci. & Tech., 2009, 22(7): 55~58

胡秀寒, 周田华, 贺岩, 朱小磊, 陈卫标. 基于数字信号处理机的水下光通信收发系统设计及分析[J]. 中国激光, 2013, 40(3): 0305003. Hu Xiuhan, Zhou Tianhua, He Yan, Zhu Xiaolei, Chen Weibiao. Design and Analysis of Underwater Optical Communication Transceiver System Based on Digital Signal Processor[J]. Chinese Journal of Lasers, 2013, 40(3): 0305003.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!