光学学报, 2016, 36 (9): 0902001, 网络出版: 2016-09-09   

基于驻波拉曼光场的磁不敏态物质波对称分束

Symmetric Matter Wave Splitting of Magnetically Insensitive States by Standing Wave Raman Light
作者单位
1 中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
2 中国科学院大学, 北京 100049
摘要
提出了基于磁不敏态的Raman-Nath对称分束方法和内态干涉方案。基于磁不敏态的干涉对磁场涨落敏感性较低,有助于增强干涉条纹的对比度。如果将Raman-Nath对称分束方法应用于路径共轭的原子陀螺仪,系统噪声可显著降低。通过优化双脉冲对称分束参数,可以获得较高的衍射效率。内态干涉方案成功解决了干涉动量态易受环境影响的问题。
Abstract
The method of Raman-Nath symmetric beam splitting based on magnetically insensitive states and the scheme of internal state interference are proposed. The interference based on magnetically insensitive states is insensitive to the magnetic fluctuation, which is beneficial to the contrast enhancement of interference fringes. If such a Raman-Nath symmetric beam splitting method is applied in the path-conjugate atom gyroscope, the system noise is obviously reduced. By means of optimizing the symmetric-beam-splitting parameters of double pulses, it is possible to obtain a high diffraction efficiency. The scheme of internal state interference is successfully used to solve the problem of momentum state interference being susceptible to the environment.
参考文献

[1] Zhou Lin, Long Shitong, Tang Biao, et al. Test of equivalence principle at 10-8 level by a dual-species double-diffraction Raman atom interferometer[J]. Phys Rev Lett, 2015, 115(1): 013004.

[2] Sorrentino F, Bodart Q, Cacciapuoti L, et al. Sensitivity limits of a Raman atom interferometer as a gravity gradiometer[J]. Phys Rev A, 2014, 89(2): 023607.

[3] Fixler J B, Foster G T, Mcguirk J M, et al. Atom interferometer measurement of the Newtonian constant of gravity[J]. Science, 2007, 315(5808): 74-77.

[4] Rosi G, Sorrentino F, Cacciapuoti L, et al. Precision measurement of the Newtonian gravitational constant using cold atoms[J]. Nature, 2014, 510(7506): 518-521.

[5] Graham P W, Hogan J M, Kasevich M A, et al. New method for gravitational wave detection with atomic sensors[J]. Phys Rev Lett, 2013, 110(17): 171102.

[6] Hohensee M, Lan S Y, Houtz R, et al. Sources and technology for an atomic gravitational wave interferometric sensor[J]. Gen Relat Gravit, 2011, 43(7): 1905-1930.

[7] Dimopoulos S, Graham P W, Hogan J M, et al. Atomic gravitational wave interferometric sensor[J]. Phys Rev D, 2008, 78(12): 122002.

[8] Muller H, Peters A, Chu S. A precision measurement of the gravitational redshift by the interference of matter waves[J]. Nature, 2010, 463(7283): 926-929.

[9] Gustavson T L, Landragin A, Kasevich M A. Rotation sensing with a dual atom-interferometer Sagnac gyroscope[J]. Classical Quant Grav, 2000, 17(12): 2385.

[10] Gustavson T L, Bouyer P, Kasevich M A. Precision rotation measurements with an atom interferometer gyroscope[J]. Phys Rev Lett, 1997, 78(11): 2046-2049.

[11] Weitz M, Young B C, Chu S. Atomic interferometer based on adiabatic population transfer[J]. Phys Rev Lett, 1994, 73(19): 2563-2566.

[12] Mcguirk J M, Snadden M J, Kasevich M A. Large area light-pulse atom interferometry[J]. Phys Rev Lett, 2000, 85(21): 4498-4501.

[13] Tackmann G, Berg P, Abend S, et al. Large-area Sagnac atom interferometer with robust phase read out[J]. Comptes Rendus Physique, 2014, 15(10): 884-897.

[14] Wu S J, Su E, Prentiss M. Demonstration of an area-enclosing guided-atom interferometer for rotation sensing[J]. Phys Rev Lett, 2007, 99(17): 173201.

[15] Wu S, Wang Y J, Diot Q, et al. Splitting matter waves using an optimized standing-wave light-pulse sequence[J]. Phys Rev A, 2005, 71(4): 043602.

[16] Wang Y J, Anderson D Z, Bright V M, et al. Atom Michelson interferometer on a chip using a Bose-Einstein condensate[J]. Phys Rev Lett, 2005, 94(9): 090405.

[17] Cronin A D, Schmiedmayer J, Pritchard D E. Optics and interferometry with atoms and molecules[J]. Rev Mod Phys, 2009, 81(3): 1051.

[18] Keller C, Schmiedmayer J, Zeilinger A, et al. Adiabatic following in standing-wave diffraction of atoms[J]. Applied Physics B, 1999, 69(4): 303-309.

[19] Torii Y, Suzuki Y, Kozuma M, et al. Mach-Zehnder Bragg interferometer for a Bose-Einstein condensate[J]. Phys Rev A, 2000, 61(4): 041602.

[20] Featonby P D, Summy G S, Webb C L, et al. Separated-path Ramsey atom interferometer[J]. Phys Rev Lett, 1998, 81(3): 495-499.

[21] Harber D M, Lewandowski H J, Mcguirk J M, et al. Effect of cold collisions on spin coherence and resonance shifts in a magnetically trapped ultracold gas[J]. Phys Rev A, 2002, 66(5): 053616.

[22] Sárkány L, Weiss P, Hattermann H, et al. Controlling the magnetic-field sensitivity of atomic-clock states by microwave dressing[J]. Phys Rev A, 2014, 90(5): 053416.

[23] Baumgrtner F, Sewell R J, Eriksson S, et al. Measuring energy differences by BEC interferometry on a chip[J]. Phys Rev Lett, 2010, 105(24): 243003.

[24] Brion E, Pedersen L H, Mlmer K. Adiabatic elimination in a lambda system[J]. Journal of Physics A: Mathematical and Theoretical, 2007, 40(5): 1033.

[25] Hakobyan M V, Red′kov V M, Ishkhanyan A M. Adiabatic asymmetric scattering of atoms in the field of a standing wave[J]. Laser Phys, 2015, 25(6): 066001.

[26] Laine T A, Stenholm S. Adiabatic processes in three-level systems[J]. Phys Rev A, 1996, 53(4): 2501.

[27] Szigeti S S, Debs J E, Hope J J, et al. Why momentum width matters for atom interferometry with Bragg pulses[J]. New Journal of Physics, 2012, 14(2): 023009.

陈康, 陈涛, 钱军, 李晓林, 王育竹. 基于驻波拉曼光场的磁不敏态物质波对称分束[J]. 光学学报, 2016, 36(9): 0902001. Chen Kang, Chen Tao, Qian Jun, Li Xiaolin, Wang Yuzhu. Symmetric Matter Wave Splitting of Magnetically Insensitive States by Standing Wave Raman Light[J]. Acta Optica Sinica, 2016, 36(9): 0902001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!