中国激光, 2011, 38 (1): 0103001, 网络出版: 2010-12-14   

不锈钢薄壁零件选区激光熔化制造及影响因素研究 下载: 533次

Study on Process and Effective Factors of Stainless Steel Thin-Wall Parts Manufactured by Selective Laser Melting
作者单位
华南理工大学机械与汽车工程学院, 广东 广州 510640
摘要
为了实现薄壁零件的快速制造,在快速成型设备Dimetal-280上进行了选区激光熔化(SLM)成型工艺实验研究,分析了SLM中不同激光功率、扫描速度、铺粉装置、离焦量和层厚对成型效果的影响,在实验中获得了优化的工艺参数,并成型了变截面的薄壁零件,零件致密度达96.95%。在扫描电镜下观察了零件的表面及侧面,结果表明其层与层之间熔合良好;分析表明成型设备成型零件壁厚的绝对误差极限值在20 μm左右;薄壁零件顶部壁宽为101.3 μm,底部壁宽为142.0 μm,与设计值相差分别为21.3 μm和22.0 μm,与极限值相吻合;拉伸测试表明,抗拉强度范围为465~625 MPa,屈服强度范围为390~515 MPa,延伸率范围为23%~48%。
Abstract
For the rapid manufacturing of thin-wall parts, the process experiments of selective laser melting (SLM) have been carried out on Dimetal-280 system. The influence factors such as laser power, scanning speed, powder preparing setting, defocus length and powder layer thickness are experimented and analyzed, then a group of optimal process parameters have been gotten. In the experiment, a variable cross-section thin-wall part with density of 96.95% has been produced. The result shows that the metallurgical bonding layer by layer is excellent in the thin-wall part when investigated in scanning electron microscope; It is shown that the minimum absolute error in the wall thickness of manufacturing parts using the SLM equipment is about 20 μm. The top and bottom thickness of the SLM part wall are 101.3 and 142.0 μm, respectively, and the differences between designed and SLM part are 21.3 and 22.0 μm, respectively, which are identical with the minimum absolute error. Tensile strength test shows that the tensile strength is 465~625 MPa, yield strength is 390~515 MPa, and elongation is 23%~48%.
参考文献

[1] . 激光熔覆成形金属薄壁结构的试验研究[J]. 机械工程学报, 2004, 40(10): 185-188.

    . Experimental study on fabrication of thin-wall metallic features by laser cladding[J]. Chinese J. Mechanical Engineering, 2004, 40(10): 185-188.

[2] . 激光单道熔覆成形的金属零件壁厚模型的研究[J]. 材料科学与工艺, 2005, 13(1): 99-102.

    . Model of wall thickness of the part formed by single-pass laser cladding[J]. Materials Science & Technology, 2005, 13(1): 99-102.

[3] 王西彬, 解丽静. 超高速切削技术及其新进展[J]. 中国机械工程, 2000, 11(1-2): 190~194

    Wang Xibin, Xie Lijing. Technical status and progress in high speed cutting[J]. China Mechanical Engineering, 2000, 11(1-2): 190~194

[4] 张伟, 徐家文. 铝合金薄壁整体构件的数控电解加工试验研究[J]. 电加工与模具, 2007, (4): 61~63

    Zhang Wei, Xu Jiawen. Study on numerically controlled electrochemical machining of thin-wall aluminium alloy integral components[J]. Electromachining & Mould, 2007, (4): 61~63

[5] . 一种薄壁零件的制造工艺技术[J]. 电子工艺技术, 2008, 29(1): 40-42.

    . Manufacturing technics of thin-wall parts[J]. Electronics Process Technology, 2008, 29(1): 40-42.

[6] . 金属直薄壁件激光直接沉积过程的有限元模拟Ι—沉积过程中温度场的模拟[J]. 金属学报, 2006, 42(5): 449-453.

    . . Finite element simulation for laser direct depositing processes of metallic vertical thin vallparts Ι. the simulation for temperature field during depositing processes[J]. Acta Metallurcica Sinica, 2006, 42(5): 449-453.

[7] . 激光快速成形金属薄壁零件的三维瞬态温度场数值模拟[J]. 中国有色金属学报, 2003, 13(4): 887-892.

    . Numerical simulation of 3D transient temperature field in thin-wall metal parts fabricated by laser direct deposition[J]. Chinese J. Nonferrous Metals, 2003, 13(4): 887-892.

[8] . 激光直接烧结成形多层金属薄壁件的温度场有限元模拟[J]. 中国机械工程, 2007, 18(21): 2618-2623.

    . Finite element simulation for the temperature field in multi-layer thin-wall metal part formed by DMLS[J]. China Mechanical Engineering, 2007, 18(21): 2618-2623.

[9] . A. Mumtaz, N. Hopkinson. Selective laser melting of thin wall parts using pulse shaping[J]. J. Materials Processing Technology, 2010, 210(2): 279.

[10] Juergen J. Brandner, Edgar Hansjosten, Eugen Anurjew. Microstructure devices generation by selective laser melting[C]. SPIE, 2007, 6459: 59~67

[11] . 选区激光熔化快速成型过程分析[J]. 华南理工大学学报(自然科学版), 2007, 35(3): 22-27.

    . Process analysis of rapid prototyping with selective laser melting[J]. J. South China University of Technology (Natural Science Edition), 2007, 35(3): 22-27.

[12] 王迪, 杨永强, 吴伟辉. 光纤激光选区熔化316L不锈钢工艺优化[J]. 中国激光, 2009, 36(12): 3233~3239

    Wang Di, Yang Yongqiang, Wu Weihui. Process optimization for 316L stainless steel by fiber laser selective melting[J]. Chinese J. Lasers, 2009, 36(12): 3233~3239

[13] . Kruth, P. Mercelis, J. van Vaerenbergh et al.. Binding mechanisms in selective laser sintering and selective laser melting[J]. Rapid Prototyping Journal, 2005, 11(1): 26-36.

[14] . . Selective laser melting of Fe-Ni-Cr layer on AISI H13 tool steel[J]. Transaction Nonferrous Metals Society of China, 2009, 19(4): 921-924.

[15] . Morgan, C. J. Sutcliffe, W. O′ Neill. Density analysis of direct metal re-melted 316L stainless steel cubic primitives[J]. J. Materials Science, 2004, 39(4): 1195-1205.

[16] . Stamp, P. Fox, W.O′Neill et al.. The development of a scanning strategy for the manufacture of porous biomaterials by selective laser melting[J]. J. Mater Science: Materials in Medicine, 2009, 20(9): 1839-1848.

[17] . C. Cheng, Z. X. Guo, Y. H. Liu et al.. Characteristics of cobalt-based alloy coating on tool steel prepared by powder feeding laser cladding[J]. Optics Laser Technology, 2007, 39(8): 1544-1550.

[18] 杨永强, 何兴容, 吴伟辉 等. 选区激光熔化直接成型个性化骨科手术模板[J]. 中国激光, 2009, 36(9): 2460~2464

    Yang Yongqiang, He Xingrong, Wu Weihui et al.. Direct manufacturing of customized orthopedics surgery orienting model by selective laser melting[J]. Chinese J. Lasers, 2009, 36(9): 2460~2464

[19] . Yadroitsev, I. Shishkovsky, P. Bertrand et al.. Manufacturing of fine-structured 3D porous filter elements by selective laser melting[J]. Applied Surface Science, 2009, 255(10): 5523-5527.

[20] . Quintino, A. Costa, R. Miranda et al.. Welding with high power fiber laserA preliminary study[J]. Mater Design, 2007, 28(4): 1231-1237.

[21] 吴伟辉, 杨永强, 王红卫 等. 光纤激光直接快速成型316L不锈钢精密零件研究[J]. 激光技术, 2009, 33(5): 486~489

    Wu Weihui, Yang Yongqiang, Wang Hongwei et al.. Research on direct rapid manufacturing of 316L fine metal part using fiber laser[J]. Laser Technology, 2009, 33(5): 486~489

[22] 吴伟辉, 杨永强, 卫国强. 选区激光熔化快速成型制造精密金属零件技术[J]. 中国激光, 2007, 34(suppl.): 175~179

    Wu Weihui, Yang Yongqiang, Wei Guoqiang. Direct manufacturing of precision metal parts by selective laser melting[J]. Chinese J. Lasers, 2007, 34(suppl.): 175~179

[23] 朱中平. 不锈钢钢号中外对照手册[M].北京:化学工业出版社,2004. 90~91

    Zhu Zhongping. Stainless Steel Manual of Chinese and Foreign Comparison[M]. Beijing: Chemical Industry Press, 2004. 90~91

[24] . 纳米晶体材料的Hall-Petch关系[J]. 材料研究学报, 1994, 8(5): 385-391.

    . The Hall-Petch relation in nanocrystalline materials[J]. Chinese J. Materials Research, 1994, 8(5): 385-391.

杨永强, 罗子艺, 苏旭彬, 王迪. 不锈钢薄壁零件选区激光熔化制造及影响因素研究[J]. 中国激光, 2011, 38(1): 0103001. Yang Yongqiang, Luo Ziyi, Su Xubin, Wang Di. Study on Process and Effective Factors of Stainless Steel Thin-Wall Parts Manufactured by Selective Laser Melting[J]. Chinese Journal of Lasers, 2011, 38(1): 0103001.

本文已被 15 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!