发光学报, 2017, 38 (3): 353, 网络出版: 2017-04-10  

基于KMnF3∶Yb3+,Er3+纳米晶的红光聚合物平面光波导放大器

Polymer Optical Waveguide Amplifier at 655 nm Based on KMnF3∶Yb3+,Er3+ Nanocrystals
作者单位
集成光电子学国家重点联合实验室吉林大学实验区, 吉林大学 电子科学与工程学院, 吉林省光通信用聚合物波导器件工程实验室, 吉林 长春 130012
摘要
制作了基于KMnF3∶Yb3+,Er3+纳米晶材料的工作波长655 nm的聚合物平面光波导放大器。材料的吸收光谱表明, KMnF3∶Yb3+,Er3+纳米晶在980 nm附近有很强的吸收。在980 nm激光的激发下, 由于Er3+和Mn2+能级之间的能量传递, KMnF3∶Yb3+,Er3+纳米晶产生了很强的红色上转换发光。根据KMnF3∶Yb3+,Er3+纳米粒子的发光特性, 制备了KMnF3∶Yb3+,Er3+ NCs-PMMA复合材料, 用其作为芯层设计了掩埋形结构光波导放大器, 利用传统的半导体工艺完成器件制备。器件测试结果表明, 当655 nm信号光功率为0.1 mW、980 nm泵浦功率为260 mW时, 器件获得了2.7 dB的相对增益。
Abstract
An optical waveguide amplifier at 655 nm based on KMnF3∶Yb3+,Er3+ nanocrtstals-PMMA covalent-linking nanocomposites pumped by a 980 nm laser diode was demonstrated. The absorption spectrum indicates that the nanocrystals have significant absorption at 980 nm. The fluorescence spectrum was measured under the excitation of 980 nm laser. An optical waveguide amplifier with embedded structure was fabricated using KMnF3∶Yb3+,Er3+ NCs-PMMA nanoparticles as the core layer. A relative gain of 2.7 dB at 655 nm wavelength was obtained when the input signal power was 0.1 mW and pump power was 260 mW in a 1.1 cm-long waveguide.
参考文献

[1] BO S, WANG J, ZHAO H, et al.. LaF3∶Er, Yb doped sol-gel polymeric optical waveguide amplifiers[J]. Appl. Phys. B, 2008, 91(1):79-83.

[2] WONG W H, CHAN K S, PUN E Y B, et al.. Ultraviolet direct printing of rare-earth-doped polymer waveguide amplifiers[J]. Appl. Phys. Lett., 2005, 87(1):011103-1-3.

[3] ENNEN H, SCHNEIDER J, POMRENKE G, et al.. 1.54-μm luminescence of erbium-implanted Ⅲ-V semiconductors and silicon[J]. Appl. Phys. Lett., 1983, 43(10):943-946.

[4] ZHOU K J, PAN S M, NGO N Q, et al.. Gain equalization of EDFA using a loop filter with a single polarization controller[J]. Chin. Opt. Lett., 2012, 10(7):070604.

[5] SINGH S, KALER R S. Flat-gain L-band Raman-EDFA hybrid optical amplifier for dense wavelength division multiplexed system[J]. IEEE Photon. Technol. Lett., 2013, 25(3):250-252.

[6] REDDY A A, BABU S S, PRADEESH K, et al.. Optical properties of highly Er3+-doped sodium-aluminium-phosphate glasses for broadband 1.5 μm emission[J]. J.Alloys Compd., 2011, 509(9):4047-4052.

[7] FERNANDEZ T T, EATON S M, DELLA V G, et al.. Femtosecond laser written optical waveguide amplifier in phospho-tellurite glass[J]. Opt. Express, 2010, 18(19):20289-20297.

[8] ZHANG D M, CHEN C, SUN X, et al.. Optical properties of Er(DBM)3Phen-doped polymer and fabrication of ridge waveguide[J]. Opt. Commun., 2007, 278(1):90-93.

[9] ZHAI X S, LI J, LIU S S, et al.. Enhancement of 1.53 μm emission band in NaYF4∶Er3+,Yb3+,Ce3+ nanocrystals for polymer-based optical waveguide amplifiers[J]. Opt. Mater. Express, 2013, 3(2):270-277.

[10] LO W S, KWOK W M, LAW G L, et al.. Impressive europium red emission induced by two-photon excitation for biological applications[J]. Inorg. Chem., 2011, 50(12):5309-5311.

[11] LAW G L, KWOK W M, WONG W T. Terbium luminescence sensitized through three-photon excitation in a self-assembled unlinked antenna[J]. J.Phys. Chem. B, 2007, 111(37):10858-10861.

[12] KAGAMI M. Optical technologies for car applications innovation of the optical waveguide device fabrication[J]. Opt. Commun. Perspect. Next Gen. Technol., 2007:23-25.

[13] QIN G S, YAMASHITA T, ARAI Y, et al.. 22 dB all-fiber green amplifier using Er3+-doped fluoride fiber[J]. Opt. Commun., 2007, 279(2):298-302.

[14] LI T, LIU T J, CHEN C, et al.. Gain characteristics of LaF3∶Er,Yb nanoparticle-doped waveguide amplifier[J]. J.Nanosci. Nanotechnol., 2011, 11(11):9409-9414.

[15] LIANG H, ZHANG Q J, ZHENG Z Q, et al.. Optical amplification of Eu(DBM)3Phen-doped polymer optical fiber[J]. Opt. Lett., 2004, 29(5):477-479.

[16] ZHENG Z Q, MING H, SUN X H, et al.. Study of Eu(DBM)3phen-doped optical polymer waveguides[J]. J. Opt. Soc. Am. B, 2005, 22(4):820-824.

[17] TSANG K C, WONG C Y, PUN E Y B. High-gain optical amplification in Eu3+-doped polymer[J]. Opt. Lett., 2010, 35(4):520-522.

[18] WANG J, WANG F, WANG C, et al.. Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals[J]. Angew. Chem. Int. Ed. Engl., 2011, 50(44):10369-10372.

[19] SELL D D, GREENE R L, WHITE R M. Optical exciton-magnon absorption in MnF2[J]. Phys. Rev., 1967, 158(2):489-510.

[20] 马春生, 秦政坤, 张大明. 光波导器件设计与模拟[M]. 北京: 高等教育出版社, 2012.

    MA C S, QIN Z K, ZHANG D M. Design and Simulation of Optical Waveguide Devices[M]. Beijing: Higher Education Press, 2012. (in Chinese)

[21] WANG T J, ZHAO D, ZHANG M L, et al.. Optical waveguide amplifiers based on NaYF4∶Er3+, Yb3+ NPs-PMMA covalent-linking nanocomposites[J]. Opt. Mater. Express, 2015, 5(3):469-478.

[22] KARVE G, BIHARI B, CHEN R T. Demonstration of optical gain at 1.06 μm in a neodymium-doped polyimide waveguide[J]. Appl. Phys. Lett., 2000, 77(9):1253-1255.

曲春阳, 黄雅莉, 张永玲, 张美玲, 赵丹, 王希斌, 王菲, 张大明. 基于KMnF3∶Yb3+,Er3+纳米晶的红光聚合物平面光波导放大器[J]. 发光学报, 2017, 38(3): 353. QU Chun-yang, HUANG Ya-li, ZHANG Yong-ling, ZHANG Mei-ling, ZHAO Dan, WANG Xi-bin, WANG Fei, ZHANG Da-ming. Polymer Optical Waveguide Amplifier at 655 nm Based on KMnF3∶Yb3+,Er3+ Nanocrystals[J]. Chinese Journal of Luminescence, 2017, 38(3): 353.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!