红外与激光工程, 2019, 48 (12): 1203009, 网络出版: 2020-02-11   

0.94 μm差分吸收激光雷达地基工作的进展

Advance of ground based differential absorption lidar at 0.94 μm
作者单位
1 中国科学院上海技术物理研究所 中国科学院空间主动光电技术科技创新重点实验室, 上海 200083
2 中国科学院大学, 北京 100049
3 中国科学院大气物理研究所 中层大气和全球环境探测重点实验室, 北京 100029
引用该论文

洪光烈, 李嘉唐, 王建宇, 李虎, 王一楠, 孔伟. 0.94 μm差分吸收激光雷达地基工作的进展[J]. 红外与激光工程, 2019, 48(12): 1203009.

Hong Guanglie, Li Jiatang, Wang Jianyu, Li Hu, Wang Yinan, Kong Wei. Advance of ground based differential absorption lidar at 0.94 μm[J]. Infrared and Laser Engineering, 2019, 48(12): 1203009.

参考文献

[1] Poberaj G, Fix A, Assion A, et al. Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy[J]. Appl Phys B, 2002, 75: 165-172.

[2] Wirth M, Fix A, Mahnke P, et al. The airborne multiwavelength water vapor differential absorption lidar WALES: system design and performance[J]. Appl Phys B, 2009, 96: 201-213.

[3] 葛烨, 舒嵘, 胡以华, 等. 大气水汽探测地基差分吸收激光雷达系统设计与性能仿真[J]. 物理学报, 2014, 63(20): 204301.

    Ge Ye, Shu Rong, Hu Yihua, et al. System design and performance simulation of ground-based differential absorption lidar for water-vapor measurements[J]. Acta Phys Sin, 2014, 63(20): 204301. (in Chinese)

[4] 洪光烈, 李嘉唐, 孔伟, 等. 935 nm差分吸收激光雷达及对流边界层层水汽探测[J]. 光学学报, 2017, 37(2): 0201003.

    Hong Guanglie, Li Jiatang, Kong Wei, et al. 935 nm differential absorption lidar and water vapor profiles in convective boundary[J]. Acta Optica Sinica, 2017, 37(2):0201003. (in Chinese)

[5] Andreas Behrendt, Volker Wulfmeyer, Andrea Riede, et al. 3-dimensional observations of atmospheric humidity with a scanning differential absorption lidar[C]//SPIE, 2009, 7475: 74750L.

[6] Volker Wulfmeyer, Jens B?觟senberg. Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications [J]. Applied Optics, 1998, 37(18): 3825-3844.

[7] Vogelmann H, Trickl T. Wide-range sounding of free-tropospheric water vapor with a differential absorption lidar (DIAL) at a high-altitude station [J]. Applied Optics, 2008, 47(12): 2116-2132.

[8] Florian Sp?覿th, Simon Metzendorf, Andreas Behrendt, et al. Online offline injection seeding system with high frequency-stability and low cross talk for water vapor DIAL [J]. Optics Communications, 2013, 309: 37-43.

[9] Volker Wulfmeyer, Craig Walther, Future performance of ground-based and airborne water-vapor differential absorption lidar. I. Overview and theory [J]. Applied Optics, 2001, 40(30): 5304-5320.

[10] Volker Wulfmeyer, Craig Walther. Future performance of ground-based and airborne water-vapor differential absorption lidar.II. Simulations of the precision of a near-infrared, high-power system[J]. Applied Optics, 2001, 40(30): 5321-5388.

洪光烈, 李嘉唐, 王建宇, 李虎, 王一楠, 孔伟. 0.94 μm差分吸收激光雷达地基工作的进展[J]. 红外与激光工程, 2019, 48(12): 1203009. Hong Guanglie, Li Jiatang, Wang Jianyu, Li Hu, Wang Yinan, Kong Wei. Advance of ground based differential absorption lidar at 0.94 μm[J]. Infrared and Laser Engineering, 2019, 48(12): 1203009.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!