光学学报, 2016, 36 (8): 0818001, 网络出版: 2016-08-18   

基于波前相位调制的宽视场光片显微镜研究 下载: 553次

Field of View-Extended Light Sheet Microscope Based on Wavefront Phase Modulation
作者单位
1 中国科学院苏州生物医学工程技术研究所江苏省医用光学重点实验室, 江苏 苏州 215163
2 中国科学院大学, 北京 100049
摘要
为解决光片显微镜成像视场范围小的问题,通过光束波前相位调制与图像拼接技术实现了光片显微镜对样本的宽视场成像。数值模拟了照明光束在波前相位调制后物镜聚焦面处的光强分布。搭建了光片显微镜光路系统,并对荧光微球、菊花花粉进行成像实验。采用片状照明光束对不同聚焦位置处的样本进行成像,再将图像进行剪裁、拼接得到宽视场成像结果。实验结果表明,488 nm激发光通过数值孔径为0.3的物镜照明样本成像,可在保持光片厚度为0.81 μm的情况下达到31.93 μm的成像视场,视场扩展到原视场的3倍以上。仿真和实验表明,采用光束波前相位调制与图像拼接技术可在不损失层切能力的前提下扩展光片显微镜的成像视场。
Abstract
In order to extend the field of view (FOV) of the light sheet microscopy system, wavefront phase modulation and digital image tiling are proposed. The intensity distribution of the light sheet at the focal plane of the objective lens after wavefront phase modulation is numerically simulated. A light sheet microscopy system is built to carry out the imaging experiments for fluorescent particles and flower pollen. The light sheet illuminates different sample positions by beam defocusing to obtain different images, which are tiled to get the FOV-extended image. FOV is extended to 3 times (about 31.93 μm) of the original field with wavelength of 488 nm and numerical aperture of 0.3 while the thickness of light sheet retains 0.81 μm. The experiment and simulation results suggest that FOV of the system can be extended by wavefront phase modulation and digital image tiling with tomographic ability not sacrificed.
参考文献

[1] Mitchell T J, Saunter C D, O′Nions W, et al. Adaptive optimisation of illumination beam profiles in fluorescence microscopy[J]. SPIE, 2015, 9335: 93350B.

[2] Mertz J, Kim J. Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection[J]. Journal of Biomedical Optics, 2010, 15(1): 016027.

[3] Fuchs E, Jaffe J S, Long R A, et al. Thin laser light sheet microscope for microbial oceanography[J]. Optics Express, 2002, 10(2): 144-154.

[4] Huisken J, Stainier D Y R. Selective plane illumination microscopy techniques in developmental biology[J]. Development, 2009, 136: 1963-1975.

[5] Santi P A. Light sheet fluorescence microscopy: A review[J]. Journal of Histochemistry & Cytochemistry, 2015, 59(2): 129-138.

[6] Dean K M, Fiolka R. Uniform and scalable light-sheets generated by extended focusing[J]. Optics Express, 2014, 22(21): 26141-26152.

[7] Fahrbach F O, Gurchenkov V, Alessandri K, et al. Self-reconstructing sectioned Bessel beams offer submicron optical sectioning for large fields of view in light-sheet microscopy[J]. Optics Express, 2013, 21(9): 11425-11440.

[8] Yu B, Yu J, Li W H, et al. Nanoscale three dimensional single particle tracking by light sheet based double-helix point spread function microscopy[J]. Applied Optics, 2016, 55(3): 449-453.

[9] Nylk J, Mitchell C, Vettenburg T, et al. Wavefront shaping of a Bessel light field enhances light sheet microscopy with scattered light[J]. SPIE, 2014, 8949: 89490V.

[10] Olarte O E, Rodriguez J L, Palero J A, et al. Image formation by linear and nonlinear digital scanned light sheet fluorescence microscopy with Gaussian and Bessel beam profiles[J]. Biomedical Optics Express, 2012, 3(7): 1492-1505.

[11] Gao L. Optimization of the excitation light sheet in selective plane illumination microscopy[J]. Biomedical Optics Express, 2015, 6(3): 881-890.

[12] Gao L. Extend the field of view of selective plan illumination microscopy by tiling the excitation light sheet[J]. Optics Express, 2015, 23(5): 6102-6111.

[13] 杜艳丽, 马凤英, 弓巧侠, 等. 基于空间光调制器的光学显微成像技术[J]. 激光与光电子学进展, 2014, 51(2): 020002.

    Du Yanli, Ma Fengying, Gong Qiaoxia, et al. Optical microscopic imaging technology based on spatial light modulator[J]. Laser & Optoelectronics Progress, 2014, 51(2): 020002.

[14] 李博, 吴龟灵, 苏斐然, 等. 基于相位调制器的相位编码光模数转换分析和实验研究[J]. 中国激光, 2015, 42(5): 0505002.

    Li Bo, Wu Guiling, Su Feiran, et al. Analysis and experimental study on phase-encoded photonic analog-to-digital conversion based on phase modulator[J]. Chinese J Lasers, 2015, 42(5): 0505002.

[15] 肖昀, 张运海, 王真, 等. 入射激光对激光扫描共聚焦显微镜分辨率的影响[J]. 光学 精密工程, 2014, 22(1): 31-38.

    Xiao Yun, Zhang Yunhai, Wang Zhen, et al. Effect of incident laser on resolution of LSCM[J]. Optics and Precision Engineering, 2014, 22(1):31-38.

[16] 刘钦晓, 余飞鸿. 基于传统显微系统的波前编码显微系统设计研究[J]. 光学学报, 2014, 34(3): 0322004.

    Liu Qinxiao, Yu Feihong. Design and research of wavefront coding microscope system based on traditional microscope system[J]. Acta Optica Sinica, 2014, 34(3): 0322004.

[17] 沈川, 张成, 刘凯峰, 等. 基于像素结构空间光调制器的全息再现像问题研究[J]. 光学学报, 2012, 32(3): 0309001.

    Shen Chuan, Zhang Cheng, Liu Kaifeng, et al. Research on issues about reconstructed holographic image based on a pixelated spatial light modulator[J]. Acta Optica Sinica, 2012, 32(3): 0309001.

[18] Engelbrecht C J, Voigt F, Helmchen F. Miniaturized selective plane illumination microscopy for high contrast in vivo fluorescence imaging[J]. Optics Letters, 2010, 35(9): 1413-1415.

[19] 薛庆生. 宽视场大相对孔径高光谱成像仪光学系统设计[J]. 光学学报, 2014, 34(2): 0222003.

    Xue Qingsheng. Optical system design of wide field of view and large relative aperture hyper-spectral imager[J]. Acta Optica Sinica, 2014, 34(2): 0222003.

徐豪, 张运海, 张欣, 黄维. 基于波前相位调制的宽视场光片显微镜研究[J]. 光学学报, 2016, 36(8): 0818001. Xu Hao, Zhang Yunhai, Zhang Xin, Huang Wei. Field of View-Extended Light Sheet Microscope Based on Wavefront Phase Modulation[J]. Acta Optica Sinica, 2016, 36(8): 0818001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!