大气与环境光学学报, 2016, 11 (2): 125, 网络出版: 2016-03-29   

基于航空偏振数据的地表BPDF模型优化研究

Model Optimization of Didirectional Polarization Reflectance Distribution Function of Land Surface Based on Airborne Polarimetric Data
作者单位
1 中国科学院安徽光学精密机械研究所 中国科学院通用光学定标与表征技术重点实验室, 安徽 合肥 230031
2 中国科学院大学, 北京 100049
摘要
针对航空偏振气溶胶反演涉及的地表双向偏振辐射分布函数(BPDF)特性问题,分析了地表双向偏振反射分布物理机理,结合经典地表BPDF模型 参数特点,提出了基于阴影方程和归一化植被指数的优化地表BPDF模型。利用航空辐射偏振遥感数据,验证了新模型的精度,相对于实测结果,平均 相对偏差小于9.9%。与三种经典模型模拟结果相比,新模型值随不同观测角度变化时,其一致性很好。根据新模型精度,还模拟了地表偏振反 射率偏差与气溶胶光学厚度反演误差的关系,发现地表偏振反射率偏差为4×10-4时,带来反演气溶胶光学厚度误差小于0.03,满 足气溶胶偏振反演应用要求。
Abstract
For the characteristic problem of bidirectional polarization reflectance distribution function (BPDF) in airborne polarimetric aerosol optic depth retrieval, the physics mechanism of BPDF is analyzed, and a BPDF model is put forward combining the characteristic BPDF model with the four classical models. This model is based on the shadow function and normalized difference vegetation index factor. The accuracy of new model is validated by the data of atmosphere multi-angle polarization radiometer, and the relative error is less than 9.9%. Compared with the three classic models, the new model shows good consistency when the viewing angle changes. Based on the accuracy of the new model, the relationship is simulated between the bias of polarized reflectance of land surface and the error of the retrieved aerosol optic depth. The results indicate that only less than 0.03 of the absolute error of the retrieved aerosol optic depth is caused when the polarized reflectance of land surface changed 4×10-4, and the application requirement of polarized aerosol retrieve can be satisfied.
参考文献

[1] Hansen J, Nazarenko L, Ruedy R, et al. Earth’s energy imbalance, confirmation and implications[J]. Science, 2005, 308(3): 1431-1435.

[2] 韩志刚. 草地上空对流层气溶胶特性的卫星偏振遥感——正问题模式系统和反演初步实验[D]. 北京: 中国科学院大气物理研究所博士论文, 1999: 7-8.

    Han Zhigang. Aerosol Retrivals over Steppe With POLDER Data—Simulation Model System And Preliminary Tests[D]. Beijing: Doctorial Dissertation of Institute of Atmosphere Physics, Chinese Academy of Sciences 1999: 7-8(in Chinese).

[3] Rondeaux G, Herman M. Polarization of light reflected by crop canopies[J]. Remote Sens. Environ., 1991, (1): 63-75.

[4] Breon F M, Tanre D, Lecomte P, et al. Polarized reflectance of bare soils and vegetation — Measurements and models[J]. IEEE Trans. Geosci. Remote Sens., 1995, 33(2): 487-499.

[5] Nadal F, Breon F M. Parametrisation of surface polarized reflectance derived from POLDER spaceborne measurements[J]. IEEE Trans. Geosci. Remote Sens., 1999, 37(3): 1709-1718.

[6] Maignan F, Breon F M, Fedele E, et al. Polarized refectances of natural surfaces: Spaceborne measurements and analytical modeling[J]. Remote Sens. Environ., 2009, 113(12): 2642-2650.

[7] Loveland T R, Belward A S. The IGBP-DIS global 1 km land cover data set, DIScover: First results[J]. Int. J. Remote Sens., 1997, 18(15): 3289-3295.

[8] Roujean J L, Leroy M, Deschamps P Y. A bidirectional reflectance model of the Earth’s surface for the correction of remote-sensing data[J]. J. Geophys. Res.-Atmos., 1992, 97(D18): 20455-20468.

[9] Leon J F, Chazette P, Dulac F. Retrieval and monitoring of aerosols optical thickness over an urban area using spaceborne and ground-based remote sensing[J]. Appl. Opt, 1999, 38(33): 6918-6926.

[10] Nilson T, Kuusk A. Approximate analytic relationships for the reflectance of agricultural vegetation canopies[J]. Sov. J. Remote Sens., 1985, 4(5): 814-826.

[11] Waquet F, Leon J F, Cairns B, et al. Analysis of the spectral and angular response of the vegetated surface polarization for the purpose of aerosol remote sensing over land[J]. Appl. Opt., 2009, 48(6): 1228-1236.

[12] Hansen J E, Travis L D. Light scattering in planetary atmospheres[J]. Space Sci. Rev., 1974, 16: 527-610.

[13] Deuzé J L, Bréon F M, Devaux C, et al. Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements[J]. J. Geophys. Res.-Atmos., 2001, 106(D5): 4913-4926.

舒存铭, 孙晓兵, 王涵, 龚冠源. 基于航空偏振数据的地表BPDF模型优化研究[J]. 大气与环境光学学报, 2016, 11(2): 125. SHU Cunming, SUN Xiaobing, WANG Han, GONG Guanyuan. Model Optimization of Didirectional Polarization Reflectance Distribution Function of Land Surface Based on Airborne Polarimetric Data[J]. Journal of Atmospheric and Environmental Optics, 2016, 11(2): 125.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!