光电工程, 2018, 45 (9): 180243, 网络出版: 2018-10-02   

光纤传感用新型特种光纤的研究进展与展望

Progress and prospect of novel specialty fibers for fiber optic sensing
作者单位
1 长飞光纤光缆股份有限公司特种产品事业部光纤光缆制备技术国家重点实验室,湖北 武汉 430073
2 华中科技大学光学与电子信息学院,武汉国家光电实验室&下一代互联网接入系统国家工程实验室,湖北 武汉 430074
摘要
本文介绍了主流的特种光纤制备技术及其特点,并根据特种光纤在众多光纤传感领域的应用实例报道了熊猫型保偏光纤、旋转光纤、特殊环境用光纤以及分布式光纤传感用的新型光纤等特种光纤的研发方向及取得的成果。相比传统采用通信光纤的传感应用,基于特种光纤的光纤传感展现出明显的性能优势,并且衍生出多种新型传感机理的光纤传感系统。
Abstract
The paper reviews the major techniques of specialty fiber fabrication. It primarily reports the progress of panda-type polarization maintaining fiber, spun fiber, specialty fibers for harsh environment and those for novel distributed sensing applications. Compared with the sensing systems utilizing conventional communication fiber, the fiber optic sensors based on specialty fibers show evident advances in performance. Additionally, the development of specialty fibers facilitates the advent of novel sensing mechanisms.
参考文献

[1] 王廷云. 特种光纤与光纤通信[M]. 上海: 上海科学技术出版社, 2016.

[2] 刘铁根, 王双, 江俊峰, 等. 航空航天光纤传感技术研究进展[J]. 仪器仪表学报, 2014, 35(8): 1681–1692.

    Liu T G, Wang S, Jiang J F, et al. Advances in optical fiber sensing technology for aviation and aerospace application[J]. Chinese Journal of Scientific Instrument, 2014, 35(8): 1681–1692.

[3] Takeda S I, Aoki Y, Nagao Y. Damage monitoring of CFRP stiffened panels under compressive load using FBG sensors[J]. Composite Structures, 2012, 94(3): 813–819.

[4] Dandridge A, Cogdell G B. Fiber optic sensors for navy applications[ J]. IEEE LCS, 1991, 2(1): 81–89.

[5] Peng W, Banerji S, Kim Y C, et al. Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications[J]. Optics Letters, 2005, 30(22): 2988–2990.

[6] Integrated Publishing, Inc. Fabrication of optical fibers[EB/OL]. http://www.tpub.com/neets/tm/107–5.htm.

[7] Dutton H S. Understanding optical communications[EB/OL]. [2009–02–19]. http://medea.uib.es/salvador/coms-optiques, addicional/ibm/ch06/06–02.Html.

[8] Stadnik D. Optical fiber technology[EB/OL]. http://csrgch. pw.edu.pl/tutorials/fiber.

[9] Pfuch A, Heft A, Weidl R, et al. Characterization of SiO2 thin films prepared by plasma-activated chemical vapour deposition[ J]. Surface and Coatings Technology, 2006, 201(1–2): 189–196.

[10] Lefèvre H C. The Fiber-Optic Gyroscope[M]. London: Artech House Inc., 1993.

[11] Bergh R A, Lefevre H C, Shaw H J. All-single-mode fiber-optic gyroscope[J]. Optics Letters, 1981, 6(4): 198–200.

[12] Sanders G A, Szafraniec B, Liu R Y, et al. Fiber optic gyros for space, marine, and aviation applications[J]. Proceeding of SPIE, 1996, 2837: 61–71.

[13] Bohnert K, Gabus P, Kostovic J, et al. Optical fiber sensors for the electric power industry[J]. Optics and Lasers in Engineering, 2005, 43(3–5): 511–526.

[14] Michie C. Polarimetric optical fiber sensors[M]//Yin S Z, Ruffin P B, Yu F T S. Fiber Optic Sensors. Boca Raton, FL: CRC Press, 2008.

[15] Lin H, Huang S C. Fiber-optics multiplexed interferometric current sensors[J]. Sensors and Actuators A: Physical, 2005, 121(2): 333–338.

[16] Foroni M, Ruggeri L, Poli F, et al. S+C+L band double-pass EDFA[C]// Optical Amplifiers and Their Applications/Coherent Optical Technologies and Applications. Whistler Canada Washington, DC: OSA, 2006: JWB44.

[17] Nix M, Yam S S H. Highly efficient dual wavelength pumping scheme for thulium-doped fiber amplifier[C]//Proceedings of the 19th Annual Meeting of the IEEE Lasers and electro-optics Society. Montreal, Que., Canada: IEEE, 2006: 390–391.

[18] Miyazaki T, Inagaki K, Karasawa Y, et al. Nd-doped double-clad fiber amplifier at 1.06 μm[J]. Journal of Lightwave Technology, 1998, 16(4): 562–566.

[19] Li M J. Bend-insensitive optical fibers for FTTH applications[J]. Proceedings of SPIE, 2009, 7234: 72340B.

[20] 成煜, 李诗愈, 李进延, 等. 抗弯光纤的理论研究与制造[J]. 光学与光电技术, 2005, 3(6): 38–40.

    Cheng Y, Li S Y, Li J Y, et al. Theory research and manufacture of bend insensitive optical fiber[J]. Optics & Optoelectronic Technology, 2005, 3(6): 38–40.

[21] Bao X Y, Chen L. Recent progress in distributed fiber optic sensors[J]. Sensors, 2012, 12(7): 8601–8639.

[22] Bao X Y, Chen L. Recent progress in Brillouin scattering based fiber sensors[J]. Sensors, 2011, 11(4): 4152–4187.

[23] Motil A, Bergman A, Tur M. [INVITED] State of the art of Brillouin fiber-optic distributed sensing[J]. Optics & Laser Technology, 2016, 78: 81–103.

[24] Dong Y K, Chen L, Bao X Y. Time-division multiplexing-based BOTDA over 100km sensing length[J]. Optics Letters, 2011, 36(2): 277–279.

[25] Wang F, Zhang X P, Lu Y G, et al. Spatial resolution analysis for discrete Fourier transform-based Brillouin optical time domain reflectometry[J]. Measurement Science and Technology, 2009, 20(2): 025202.

[26] Dong Y K, Zhang H Y, Chen L, et al. 2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair[J]. Applied Optics, 2012, 51(9): 1229–1235.

[27] Zhao Z Y, Soto M A, Tang M, et al. Distributed shape sensing using Brillouin scattering in multi-core fibers[J]. Optics Express, 2016, 24(22): 25211–25223.

[28] Zhao Z Y, Dang Y L, Tang M, et al. Spatial-division multiplexed Brillouin distributed sensing based on a heterogeneous multicore fiber[J]. Optics Letters, 2017, 42(1): 171–174.

[29] Zhao Z Y, Dang Y L, Tang M, et al. Spatial-division multiplexed hybrid Raman and Brillouin optical time-domain reflectometry based on multi-core fiber[J]. Optics Express, 2016, 24(22): 25111–25118.

[30] Moore J P, Rogge M D. Shape sensing using multi-core fiber optic cable and parametric curve solutions[J]. Optics Express, 2012, 20(3): 2967–2973.

[31] Moore J P. Shape sensing using multi-core fiber[ C]//Proceedings of 2015 Optical Fiber Communications Conference and Exhibition. Los Angeles, CA, USA: IEEE, 2015: Th1C.2.

[32] NASA. Real-Time 3D Shape Rendering: CA 93523–0273[R]. USA: National Aeronautics and Space Administration, 2013.

[33] Rogge M D, Moore J P. Shape sensing using a multi-core optical fiber having an arbitrary initial shape in the presence of extrinsic forces: US-Patent-8,746,076[P]. 2014–06-10.

[34] Maughan S M, Kee H H, Newson T P. Simultaneous distributed fibre temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter[J]. Measurement Science and Technology, 2001, 12(7): 834–842.

[35] Soto M A, Bolognini G, Di Pasquale F. Enhanced simultaneous distributed strain and temperature fiber sensor employing spontaneous Brillouin scattering and optical pulse coding[J]. IEEE Photonics Technology Letters, 2009, 21(7): 450–452.

[36] Alahbabi M N, Cho Y T, Newson T P. Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering[J]. Optics Letters, 2005, 30(11): 1276–1278.

[37] Bolognini G, Soto M A, Pasquale F D. Fiber-optic distributed sensor based on hybrid Raman and Brillouin scattering employing multiwavelength Fabry–Pérot lasers[J]. IEEE Photonics Technology Letters, 2009, 21(20): 1523–1525.

[38] Bolognini G, Soto M A. Optical pulse coding in hybrid distributed sensing based on Raman and Brillouin scattering employing Fabry-Perot lasers[J]. Optics Express, 2010, 18(8): 8459–8465.

[39] Taki M, Signorini A, Oton C J, et al. Hybrid Raman/ Brillouin-optical-time-domain- analysis-distributed optical fiber sensors based on cyclic pulse coding[J]. Optics Letters, 2013, 38(20): 4162–4165.

[40] Sasaki Y, Takenaga K, Matsuo S, et al. Few-mode multicore fibers for long-haul transmission line[J]. Optical Fiber Technology, 2017, 35: 19–27.

[41] Mizuno T, Takara H, Sano A, et al. Dense space-division multiplexed transmission systems using multi-core and multi-mode fiber[J]. Journal of Lightwave Technology, 2016, 34(2): 582–592.

[42] Mizuno T, Takara H, Shibahara K, et al. Dense space division multiplexed transmission over multicore and multimode fiber for long-haul transport systems[J]. Journal of Lightwave Technology, 2016, 34(6): 1484–1493.

[43] Kumar A, Goel N K, Varshney R K. Studies on a few-mode fiber-optic strain sensor based on LP01-LP02 mode interference[ J]. Journal of Lightwave Technology, 2001, 19(3): 358–362.

[44] Chen J, Lu P, Liu D M, et al. Optical fiber curvature sensor based on few mode fiber[J]. Optik-International Journal for Light and Electron Optics, 2014, 125(17): 4776–4778.

[45] Su J, Dong X P, Lu C X. Intensity detection scheme of sensors based on the modal interference effect of few mode fiber[J]. Measurement, 2016, 79: 182–187.

[46] Salik E, Medrano M, Cohoon G, et al. SMS fiber sensor utilizing a few-mode fiber exhibits critical wavelength behavior[J]. IEEE Photonics Technology Letters, 2012, 24(7): 593–595.

[47] Su J, Dong X P, Lu C X. Property of bent few-mode fiber and its application in displacement sensor[J]. IEEE Photonics Technology Letters, 2016, 28(13): 1387–1390.

[48] Luo C, Lu P, Fu X, et al. All-fiber sensor based on few-mode fiber offset splicing structure cascaded with long-period fiber grating for curvature and acoustic measurement[J]. Photonic Network Communications, 2016, 32(2): 224–229.

[49] Zhang J. Few-mode fiber based sensor in biomedical application[ J]. Proceedings of SPIE, 2015, 9480: 94800O.

[50] Song K Y, Kim Y H. Characterization of stimulated Brillouin scattering in a few-mode fiber[J]. Optics Letters, 2013, 38(22): 4841–4844.

[51] Li A, Hu Q, Shieh W. Characterization of stimulated Brillouin scattering in a circular-core two-mode fiber using optical time-domain analysis[J]. Optics Express, 2013, 21(26): 31894–31906.

[52] Wu H, Wang R X, Liu D M, et al. Few-mode fiber based distributed curvature sensor through quasi-single-mode Brillouin frequency shift[J]. Optics Letters, 2016, 41(7): 1514–1517.

童维军, 杨晨, 刘彤庆, 张心贲, 杨坤, 杨玉诚, 唐明. 光纤传感用新型特种光纤的研究进展与展望[J]. 光电工程, 2018, 45(9): 180243. Tong Weijun, Yang Chen, Liu Tongqing, Zhang Xinben, Yang Kun, Yang Yucheng, Tang Ming. Progress and prospect of novel specialty fibers for fiber optic sensing[J]. Opto-Electronic Engineering, 2018, 45(9): 180243.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!