光电工程, 2018, 45 (8): 180030, 网络出版: 2018-08-25  

基于动态捕获区域的DC-TLD目标跟踪算法

TLD target tracking algorithm based on dynamic capture
作者单位
暨南大学理工学院光电工程系,广东 广州 510632
摘要
为提升TLD 目标跟踪算法的处理速度,以达到在更高分辨率视频中跟踪目标的实时性要求,在TLD 算法框架的基础上,提出了一种基于动态捕获区域的TLD 目标跟踪算法(DC-TLD)。算法采用前一帧目标位置作为当前帧目标位置的预测值,减小了目标位置的预测误差。研究了检测区域负样本出现需满足的条件,分析了检测区域大小对算法鲁棒性的影响。针对样本的访问方式,提出基于索引的访问方法,极大地减少了访问时间。实验结果表明,该方法不仅有效降低了TLD 算法的样本检测时间,而且提高了算法的鲁棒性。
Abstract
In order to improve the ability of processing video image with high frame rate and meet the real-time requirement in higher resolution video tracking goal, DC-TLD target tracking algorithm, which is based on TLD algorithm and the theory of capturing sample dynamically, is proposed. Firstly, DC-TLD takes the target location of the previous frame as the predicted value of the current frame. Secondly, it calculates the threshold r of negative samples for ensuring that the number of negative samples is sufficient. Thirdly, it accesses the samples by index. The results of experiments show that DC-TLD is more robust and more efficient.
参考文献

[1] 程卫亮, 王向军, 万子敬, 等. 压缩域目标跟踪算法在小型化 DSP 平台上的研究与实现[J]. 光电工程, 2017, 44(10): 972–982.

    Cheng W L, Wang X J, Wan Z J, et al. Research and implementation of target tracking algorithm in compression domain on miniaturized DSP platform[J]. Opto-Electronic Engineering, 2017, 44(10): 972–982.

[2] Henriques J F, Rui C, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583–596.

[3] Nam H, Han B. Learning multi-domain convolutional neural networks for visual tracking[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 4293–4302.

[4] Nam H, Baek M, Han B. Modeling and propagating CNNs in a tree structure for visual tracking[EB/OL]. https://arxiv.org/abs/ 1608.07242v1, 2016.

[5] Kalal Z, Mikolajczyk K, Matas J. Tracking-learning-detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409–1422.

[6] Hare S, Saffari A, Torr P H S. Struck: structured output tracking with kernels[C]//Proceedings of 2011 IEEE International Conference on Computer Vision. Barcelona, Spain: IEEE, 2012: 263–270.

[7] Brox T, Bruhn A, Papenberg N, et al. High accuracy optical flow estimation based on a theory for warping[C]//Proceedings of 2004 Computer Vision-ECCV. Berlin, Heidelberg: Springer, 2004: 25–36.

[8] Kalal Z, Mikolajczyk K, Matas J. Forward-backward error: automatic detection of tracking failures[C]//Proceedings of 2010 20th International Conference on Pattern Recognition. Istanbul, Turkey: IEEE, 2010: 2756–2759.

[9] Viola P, Jones M. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of 2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kauai: IEEE, 2003.

[10] Kalal Z, Matas J, Mikolajczyk K. P-N learning: bootstrapping binary classifiers by structural constraints[C]//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2014: 49–56.

[11] 江博. 基于Kalman 的TLD 目标跟踪算法研究[D]. 西安: 西安科 技大学, 2013.

    Jiang B. Research on TLD algorithm based on Kalman filter[D]. Xi’an: Xi’an University of Science and Technology, 2013.

[12] 王美健, 吴小俊. 适于非线性机动目标跟踪的新IMM平滑算法[J]. 光电工程, 2016, 43(10): 18–24.

    Wang M J, Wu X J. New IMM smoothing algorithm suitable for nonlinear maneuvering target tracking[J]. Opto-Electronic Engineering, 2016, 43(10): 18–24.

[13] Wu Y, Lim J, Yang M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834–1848.

何俊衡, 刘曙, 狄红卫. 基于动态捕获区域的DC-TLD目标跟踪算法[J]. 光电工程, 2018, 45(8): 180030. He Junheng, Liu Shu, Di Hongwei. TLD target tracking algorithm based on dynamic capture[J]. Opto-Electronic Engineering, 2018, 45(8): 180030.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!