光学 精密工程, 2016, 24 (11): 2721, 网络出版: 2016-12-26   

大口径主镜位置的实时检测

On line measurement of position for large primary mirror
作者单位
中国科学院 长春光学精密机械与物理研究所 光电探测部, 吉林 长春 130033
摘要
由于望远镜主镜位置的调整与主镜位置的实时监测相关, 本文设计了基于位移传感器的主镜位置监测系统。重点考虑镜室重力变形的影响, 利用解析几何方法得到了解算主镜位置的算法。以实验室的1.2 m SiC主镜作为试验镜进行了主镜位置实时监测试验。在主镜绕支撑架做俯仰转动时, 通过布置在主镜背部和侧向的6个位移传感器, 实时采集测量数据, 并利用有限元方法计算镜室的变形; 最后将镜室变形作为系统差和传感器测量值代入解算算法, 得到主镜沿X、Y、Z三向平移、绕X、Y轴转动角度及主镜半径随温度变化值。测试结果显示: 该试验主镜的支撑系统中的轴向支撑刚度远大于侧向支撑刚度。当镜室转动45°时, 主镜的Z向平移变化只有20 μm, 而X向平移和Y向平移分别为146 μm和100 μm。试验结果验证了提出的实时监测方法和监测系统的准确性, 为大口径主镜实时位置校正提供了依据。
Abstract
When the primary mirror position of a telescope is adjusted, its position should be measured in real time. This paper proposes an on line measuring system for the primary mirror position based on position sensors. By taking the deformation of a mirror cell into account, a algorithm to solve the primary mirror position was obtained by using the space analytic geometry method. A 1.23 m SiC mirror in our lab was used to complete the online measuring experiment for the primary mirror position. The measuring data were collected in real time by using 6 position sensors fixed at the back and later of the mirror when the mirror was turning around the rotation axis. The cell deformation was also analyzed by using finite element method. Finally, the measuring values by the sensors and the cell deformation value were taken as the systems difference to introduce the algorithm to obtain the X\\Y\\Z displacements, rotation angles around X\\Y axis and the extension of mirror radius caused by temperature changing. Experimental results indicate that the stiffness of axial supporting mechanism is much larger than that of the lateral one. When the rotation angle of mirror is 45°, the mirror displacement in Z direction is about 20 μm, and that in X and Z directions are 146 μm and 100 μm, respectively. The accuracy of this method is verified by the test results, which provides a reference for the correction of primary mirror positions in telescopes.
参考文献

[1] 程景全. 天文望远镜[M]. 北京: 中国科学技术出版社, 2002.

    CHENG J Q. Principles of Astronomical Telescope Design [M]. Beijign: China Science and Technology Press, 2002.(in Chinese)

[2] 李振伟, 杨文波, 张楠. 水平式光电望远镜静态指向误差的修正[J]. 中国光学, 2015, 8(2): 263-269.

    LI ZH W, YANG W B, ZHANG N. Static pointing error of level mounting optoelectronictelescope [J]. Chinese Optics, 2015, 8(2): 263-269.(in Chinese)

[3] 张景旭. 地基大口径望远镜系统结构技术综述[J]. 中国光学, 2012, 5(4): 327-336.

    ZHANG J X. Overview of structure technology of large aperture ground-based telescopes [J]. Chinese Optics, 2012, 5(4): 327-336.(in Chinese)

[4] 明名, 吕天宇, 吴小霞, 等. 大气色散对4 m望远镜成像分辨力的影响与校正[J]. 中国光学, 2015, 8(5): 814-822.

    MING M, LV T Y, WU X X, et al.. Influence of atmospheric dispersion on image resolution of 4 m telescope and correctiong method [J]. Chinese Optics, 2015, 8(5): 814-822.(in Chinese)

[5] 王建立, 刘欣悦. 智能光学的概念及发展[J]. 中国光学, 2013, 6(4): 437-448.

    WANG J L, LIU X Y. Concept and development of smart optics [J]. Chinese Optics, 2013, 6(4): 437-448. (in Chinese)

[6] PAUL R, YODER J R. Opto-Mechanical Systems Design(third edition) [M]. Taylor & Francis Group CRC Press, 2006.

[7] DEVRIES J, DOUGLAS N, HIKEMAN E. Lsst telescope primary/tertiary mirror hardpoints [J].SPIE, 2010, 7739: 77391J-1-12.

[8] LARRY S, EUGENE H. Gemini primary mirror support system [J].SPIE, 1994, 2199: 223-238.

[9] STEFANO S, LEGRAND P, BATY A, et al.. Design and construction of the VLT primary mirror cell [J].SPIE, 1997, 2871: 314-325.

[10] SCOTT S W, GREENWALD D, TAPIA S.3.7-meter active primary mirror [J]. ESOC, 1994, 48: 457-462.

[11] DAVID S A, JONATHAN K, JOHN M H, et al.. The large binocular telescope primary mirror support control system description and current performance results [J].SPIE, 2008, 7018: 70184C-1-12.

[12] CHARLIE H, STEVE G, MATT J, et al.. Giant magellan telescope primary mirror cells [J]. SPIE, 2010, 7733: 773327-1-12.

[13] GRAY P M, HILL J M, DAVISON W B. Support of large borosilicate honeycomb mirroes [J].SPIE, 1994, 2199: 691-702.

[14] SCHIPANI O, ORSI S D, FERRANINA L, et al.. Active optics primary mirror support system for the 2.6 m VST telescope[J]. Applied Optics, 2010, 49(8): 1234-1241.

[15] JAMES E K, GREENWALD D. AEOS 3.67 m telescope primary mirror active control system [J]. SPIE, 1998, 3352: 400-411.

[16] 李玉霞, 刘昌华, 王建立, 等.大型望远镜主镜位姿解算与检测系统设计[J].电子测量与仪器学报, 2015, 29(5): 766-774.

    LI Y X, LIU CH H, WANG J L, et al.. Design of large telescope primary mirror position resolving and monitoring system [J].Chinese Journal of Electronic Measurement and Instrumention, 2015, 29(5): 766-774.(in chinese)

[17] 吴小霞, 李剑锋, 宋淑梅, 等.4 m SiC轻量化主镜的主动支撑系统[J].光学 精密工程, 2014, 22(9): 2451-2457.

    WU X X, LI J F, SONG SH M, et al.. Active support system for 4 m SiC light weight primary mirror [J]. Opt. Precision Eng., 2014, 22(9): 2451-2457.(in Chinese)

[18] 邵亮, 吴小霞, 陈宝钢, 等.SIC轻量化主镜的被动支撑系统[J].光学 精密工程, 2015, 23(5): 1380-1386.

    SHAO L, WU X X, CHEN B G, et al.. Passive support system of light-weight SiC primary mirror [J]. Opt. Precision Eng., 2014, 22(9): 1380-1386.(in Chinese)

[19] 王显军. 大型望远镜测角系统误差的修正[J]. 光学 精密工程, 2015, 23(9): 2446-2451.

    WANG X J.Correction of angle measuring errors for large telescope [J]. Opt. Precision Eng., 2015, 23(9): 2446-2451.(in Chinese)

[20] 葛川, 张德福, 李鹏志, 等. 电容式位移传感器的线性度标定与不确定度评定[J]. 光学 精密工程, 2015, 23(9): 2546-2552.

    GE CH, ZHANG D F, LI P ZH, et al.. Linear calibration and uncertainty evaluation for capacitance displacement sensor [J].Opt. Precision Eng., 2015, 22(9): 2546-2552.(in Chinese)

李剑锋, 吴小霞, 李玉霞, 刘昌华. 大口径主镜位置的实时检测[J]. 光学 精密工程, 2016, 24(11): 2721. LI Jian-feng, WU Xiao-xia, LI Yu-xia, LIU Chang-hua. On line measurement of position for large primary mirror[J]. Optics and Precision Engineering, 2016, 24(11): 2721.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!