发光学报, 2017, 38 (2): 248, 网络出版: 2017-02-09   

太赫兹波探测光子晶体涂层覆盖目标的可行性

Feasibility of Applying Terahertz Wave to Detect Target Covered with Photonic Crystal Coating
作者单位
1 脉冲功率激光技术国家重点实验室, 安徽 合肥 230037
2 电子工程学院, 安徽 合肥 230037
摘要
覆盖于高温目标表面的光子晶体红外涂层可实现对目标红外辐射的抑制,而太赫兹波所具有的强穿透特性使其对该类目标的探测成为可能。以相关文献中设计的光子晶体涂层为例,采用特征矩阵理论对0.3~3 THz频率范围内的太赫兹波在该类涂层中的传输特性进行理论计算和分析,重点研究了不同入射角度的太赫兹波在该类涂层中的传输特性。研究发现,上述太赫兹波段处于光子晶体的带隙之外,0.3~0.5 THz频率范围内的太赫兹波对该类红外涂层具有较强的穿透特性,其光谱透过率大于90%;而在2.4~3 THz范围内,其在涂层上具有较强的反射,且整个波段内的吸收率小于0.2%。当入射角小于60°时,其对太赫兹波的传输特性影响较小;进一步增大入射角,其透过率逐渐降低,而反射率逐渐增大。研究结果证明了利用太赫兹波进行涂层覆盖目标探测的可行性,有望利用太赫兹雷达探测弥补红外探测系统的不足。
Abstract
The photonic crystal (PC) coating with low transmittance can effectively suppress the thermal radiation of high temperature target. It becomes possible to detect such camouflaged targets applying terahertz (THz) wave due to the strong penetration capability of THz radiation. The propagation characteristics of THz wave in the PC coatings proposed in the references were investigated and analyzed theoretically based on characteristic matrix method of thin-film. The propagation characteristics of THz wave with different incident angles were studied later. The results exhibit that the THz wave ranging from 0.3 to 3 THz does not locate in the band gaps of the PCs. The wave in 0.3~0.5 THz has strong penetrability to the coating, the spectral transmittance is up to 90%, and the absorptivity over the whole band keeps as low as 0.2%. In addition, the incident angle has relatively little influence on the propagation characteristic when it is less than 60°. With the angle further increasing, the transmittance decreases and the reflectivity is diametrical. The final results demonstrate the feasibility to detect and recognize the targets covered with PC infrared stealth coatings by applying THz wave, and THz radar is promising for use to make up for the deficiency of the infrared detection system.
参考文献

[1] YABLONOVITCH E. Inhibited spontaneous emission in solid state physics and electronics [J]. Phys. Rev. Lett., 1987, 58(20):2059-2062.

[2] JOHN S. Strong localization of photons in certain disordered dielectric superlattices [J]. Phys. Rev. Lett., 1987, 58(23):2486-2489.

[3] MIAO L, SHI J M, WANG J C, et al.. Heterogeneous doped one-dimensional photonic crystal with low emissivity in infrared atmospheric window [J]. Opt. Eng., 2016, 55(5):057101.

[4] WANG Z X, CHENG Y Z, NIE Y, et al.. Design and realization of one-dimensional double hetero-structure photonic crystals for infrared-radar stealth-compatible materials applications [J]. J. Appl. Phys., 2014, 116(5):054905.

[5] ZHANG W G, XU G Y, SHI X, et al.. Ultra-low infrared emissivity at the wavelength of 3-5 μm from Ge/ZnS one-dimensional photonic crystal [J]. Photon. Nanostruct.-Fund. Appl., 2015, 14:46-51.

[6] 张继魁, 时家明, 苗雷, 等. 近中红外与1.06 μm和1.54 μm激光兼容隐身光子晶体研究 [J]. 发光学报, 2016, 37(9):1130-1134.

    ZHANG J K, SHI J M, MIAO L, et al.. Research on compatible stealth photonic crystal against near/middle infrared and 1.06 μm and 1.54 μm lasers [J]. Chin. J. Lumin., 2016, 37(9):1130-1134. (in Chinese)

[7] ENOCH S, SIMON J J, ESCOUBAS L, et al.. Simple layer-by-layer photonic crystal for the control of thermal emission [J]. Appl. Phys. Lett., 2005, 86(26):261101-1-3.

[8] JENA S, TOKAS R B, SARKAR P, et al.. Omnidirectional photonic band gap in magnetron sputtered TiO2/SiO2 one dimensional photonic crystal [J]. Thin Solid Films, 2016, 599:138-144.

[9] 刘广平, 宣益民, 韩玉阁. 一维光子晶体在热光伏技术中的应用 [J]. 光子学报, 2008, 37(1):115-119.

    LIU G P, XUAN Y M, HAN Y G. Applications of one-dimensional photonic crystal in thermophotovoltaic [J]. Acta Photon. Sinica, 2008, 37(1):115-119. (in Chinese)

[10] ZHAO X K, ZHAO Q W, WANG L L. Laser and infrared compatible stealth from near to far infrared bands by doped photonic crystal [J]. Proced. Eng., 2011, 15:1668-1672.

[11] 李文胜, 罗时军, 黄海铭, 等. 一种基于光子晶体结构的坦克涂层设计 [J]. 物理学报, 2012, 61(16):164102-1-6.

    LI W S, LUO S J, HUANG H M, et al.. The design of tank coating based on photonic crystal [J]. Acta Phys. Sinica, 2012, 61(16):164102-1-6. (in Chinese)

[12] 李文胜, 张琴, 付艳华, 等. 一种基于光子晶体结构的军用车辆红外隐身涂层的设计 [J]. 红外与激光工程, 2015, 44(11):3299-3303.

    LI W S, ZHANG Q, FU Y H, et al.. Design of infrared stealth coating of military vehicle based on photonic crystal [J]. Infrared Laser Eng., 2015, 44(11):3299-3303. (in Chinese)

[13] KOWALSKI M, KASTEK M, WALCZAKOWSKI M, et al.. Passive imaging of concealed objects in terahertz and long-wavelength infrared [J]. Appl. Opt., 2015, 54(13):3826-3833.

[14] MURRILL S R, REDMAN B, ESPINOLA R L, et al.. Advanced terahertz imaging system performance model for concealed weapon identification [J]. SPIE, 2007, 6549:654902.

[15] CORSI C, SIZOV F. THz and Security Applications [M]. Netherlands: Springer, 2014.

[16] 阎吉祥, 魏光辉. 矩阵光学 [M]. 北京: 兵器工业出版社, 1995.

    YAN J X, WEI G H. Matrix Optics [M]. Beijing: Weapon Industry Press, 1995. (in Chinese)

[17] LEE Y S. Principles of Terahertz Science and Technology [M]. New York: Springer, 2009.

[18] SAKODA K. Optical Properties of Photonic Crystals [M]. 2nd ed. Berlin Heidelberg: Springer, 2005.

王启超, 汪家春, 王枭, 赵大鹏, 张继魁, 李志刚, 曾杰. 太赫兹波探测光子晶体涂层覆盖目标的可行性[J]. 发光学报, 2017, 38(2): 248. WANG Qi-chao, WANG Jia-chun, WANG Xiao, ZHAO Da-peng, ZHANG Ji-kui, LI Zhi-gang, ZENG Jie. Feasibility of Applying Terahertz Wave to Detect Target Covered with Photonic Crystal Coating[J]. Chinese Journal of Luminescence, 2017, 38(2): 248.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!