发光学报, 2019, 40 (7): 879, 网络出版: 2019-07-31  

二氧化钛阵列的制备及其光学性能

Synthesis and Optical Properties of TiO2 Array
作者单位
1 云南民族大学 电气信息工程学院, 云南 昆明 650031
2 云南民族大学 云南省高校无线传感器网络技术重点实验室, 云南 昆明 650031
摘要
以水热法制备了由纳米棒组成的二氧化钛阵列。通过控制反应时间, 对组成阵列的二氧化钛纳米棒的尺寸进行调节。利用扫描电镜和X射线衍射光谱分析了样品的形貌和晶体结构, 发现将反应时间由4 h延长至8 h, 二氧化钛纳米棒的直径由100 nm增大到200 nm。利用紫外-可见吸收光谱测量了样品的光吸收特性, 发现了尺寸效应引起的吸收边和带隙变化,反应时间由4 h延长至8 h, 样品带隙由3.09 eV变化至2.97 eV。利用荧光光谱研究样品的光致发光性能, 发现了样品的近带边发光(382 nm左右)、自陷激子发光(420 nm左右)、束缚激子发光(456 nm左右)和缺陷能级发光(492 nm左右)。
Abstract
TiO2 array was synthesized by hydrothermal method. The scanning electron microscopy(SEM) and X-ray diffraction(XRD) are used to detect their morphology and structure. The average diameter of TiO2 nanorods was increased from 100 nm to 200 nm, when the hydrothermal reaction time changed from 4 h to 8 h. UV-vis spectra were used to detect their absorption properties. The TiO2 array with shorter diameter shows blue shift of absorption edge and broadened band gap. The band gap of TiO2 nanorod was decreased from 3.09 eV to 2.97 eV, when the hydrothermal reaction time changed from 4 h to 8 h. Photoluminescence spectra were used to detect their optical properties. Near absorption edgee mission(about 382 nm), self-trapped exciton emission(about 420 nm), bound exciton emission(about 456 nm), and defect site emission(about 492 nm) are obtained under the examination by PL spectra.
参考文献

[1] MOR G K,VARGHESE O K,PAULOSE M,et al.. A review on highly ordered,vertically oriented TiO2 nanotube arrays: fabrication,material properties,and solar energy applications [J]. Solar Energy Mater. Sol. Cells, 2006,90(14):2011-2075.

[2] GHICOV A,SCHMUKI P. Self-ordering electrochemistry:a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures [J]. Chem. Commun., 2009(20):2791-2808.

[3] TIAN J,ZHAO Z H,KUMAR A,et al.. Recent progress in design,synthesis,and applications of one-dimensional TiO2 nanostructured surface heterostructures:a review [J]. Chem. Soc. Rev., 2014,43(20):6920-6937.

[4] GRIMES C A,MOR G K. TiO2 NT Arrays Synthesis,Properties,and Applications [M]. Norwell,MA:Springer, 2009.

[5] OU H H,LO S L. Review of titania nanotubes synthesized via the hydrothermal treatment:fabrication,modification,and application [J]. Sep. Purif. Technol., 2007,58(1):179-191.

[6] 谢世伟,肖啸,谭建军,等. 基于石墨烯基电极染料敏化太阳能电池的研究进展 [J]. 中国光学, 2014,7(1):47-56.

    XIE S W,XIAO X,TAN J J,et al.. Recent progress in dye-sensitized solar cells using graphene-based electrodes [J]. Chin. Opt., 2014,7(1):47-56. (in Chinese)

[7] 马帅,曹磊,张一梅. 低温制备二氧化钛纳米薄膜及其光伏性能研究 [J]. 发光学报, 2014,35(11):1322-1330.

    MA S,CAO L,ZHANG Y M. Research on the photovoltaic properties of low-temperature processed titanium oxide nanoporousmembranes [J]. Chin. J. Lumin., 2014,35(11):1322-1330. (in Chinese)

[8] 孙先淼,孙琼,谢翠翠,等. 实验条件对二氧化钛纳米棒形貌和光电流密度的影响 [J]. 发光学报, 2013,34(3):257-261.

    SUN X M,SUN Q,XIE C C,et al.. Effects of experimental conditions on the morphology and photocurrent density of TiO2 nanorods [J]. Chin. J. Lumin., 2013,34(3):257-261. (in Chinese)

[9] 陈建华,龚竹青. 二氧化钛半导体光催化材料离子掺杂 [M]. 北京:科学出版社, 2006.

    CHEN J H,GONG Z Q. Ion Doping of Titanium Dioxide Semiconductor Photocatalytic Materials [M]. Beijing:Science Press, 2006. (in Chinese)

[10] 王辉利,聂铭歧,郝洪顺,等. TiO2/Eu3+下转换薄膜的制备及其在染料敏化太阳能电池中的应用 [J]. 发光学报, 2014,35(10):1182-1187.

    WANG H L,NIE M Q,HAO H S,et al.. Preparation of TiO2/Eu3+ down-conversion film and its application in dye-sensitized solar cell [J]. Chin. J. Lumin., 2014,35(10):1182-1187. (in Chinese)

[11] ZHANG Y X,LI G H,JIN Y X,et al.. Hydrothermal synthesis and photoluminescence of TiO2 nanowires [J]. Chem. Phys. Lett., 2002,365(3-4):300-304.

[12] GUO Y G,HU J S,LIANG H P,et al.. TiO2-based composite nanotube arrays prepared via layer-by-layer assembly [J]. Adv. Funct. Mater., 2005,15(2):196-202.

[13] LEI Y,ZHANG L D,MENG G W, et al.. Preparation and photoluminescence of highly ordered TiO2 nanowire arrays [J]. Appl. Phys. Lett., 2001,78(8):1125-1129.

[14] BERHE S A,NAG S,MOLINETS Z,et al.. Influence of seeding and bath conditions in hydrothermal growth of very thin (~20 nm) single-crystalline rutile TiO2 nanorod films [J]. ACS Appl. Mater. Interfaces, 2013,5(4):1181-1185.

[15] TAN Y G,SHU Z,ZHOU A J,et al.. One-step synthesis of nanostructured g-C3N4/TiO2 composite for highly enhanced visible-light photocatalytic H2 evolution [J]. Appl. Catal. B:Environ., 2018,230:260-268.

[16] LAI Y K,SUN L,CHEN C,et al.. Optical and electrical characterization of TiO2 nanotube arrays on titanium substrate [J]. Appl. Surf. Sci., 2005,252(4):1101-1106.

[17] SHANKAR K,BASHAM J I,ALLAM N K,et al.. Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectro chemistry [J]. J. Phys. Chem. C, 2009,113(16):6327-6359.

张建城, 陈红婉, 吴坦洋, 李昆燕, 金云霞. 二氧化钛阵列的制备及其光学性能[J]. 发光学报, 2019, 40(7): 879. ZHANG Jian-cheng, CHEN Hong-wan, WU Tan-yang, LI Kun-yan, JIN Yun-xia. Synthesis and Optical Properties of TiO2 Array[J]. Chinese Journal of Luminescence, 2019, 40(7): 879.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!