中国激光, 2013, 40 (2): 0213001, 网络出版: 2013-01-08   

激光湍流大气中继传输性能分析

Analysis of Beam Propagation Through a Relay Mirror System in Turbulent Atmosphere
作者单位
1 军事医学科学院科技部, 北京 100071
2 国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
摘要
建立了中继镜系统模型,根据中继镜系统两套自适应光学装置不同的工作条件和用途,分析了宜选用的系统类型,结果显示光源处的自适应光学装置宜选用共轭式;飞行平台处的自适应光学装置宜选用优化式。在此基础上,使用Hafnagel-Valley 5/7大气湍流模型,建立载荷平台高度30 km、目标高度25 km、下行传输瞄准精度1 μrad的中继镜系统,分析说明了第二套自适应光学装置存在必要性及其对中继镜系统性能的影响;数值模拟了0阶、5阶、10阶、20阶、50阶校正精度条件下以及理想校正时中继镜系统的光束传输性能。计算结果显示:双自适应光学装置对中继镜系统光束传输性能提升具有重要影响;闭环理想校正时,中继镜系统上行链路能量耦合效率由58.82%提升至81.27%,靶面光斑0.5 cm桶中功率比例由1.07%提升至15.85%。
Abstract
A typical model of the relay mirror system is established, and the appropriate styles of the two adaptive optics installations used in a relay mirror system are analyzed according to the different working conditions and different uses. It is recognized that the adaptive optics installation located at the light source may use the conjugate adaptive optics, the adaptive optics installation located on the platform may use the optimization algorithm based adaptive optics. Based on a laser relay mirror system under the Hufnagel-Valley 5/7 at atmospheric turbulence model condition and with target height of 25 km, platform height of 30 km, and downlink aiming precision of 1 μrad, necessarity of the second adaptive optics installation its influence on the system performance is analyzed. Performances of beam propagation through the relay mirror system with certain correction precisions of 0, 5th, 10th, 20th and 50th order as well as ideal correction condition are simulated, results show that the two adaptive optics installations have a great impact on the system performance improvement, uplink power efficiency can be improved from 58.82% to 81.27% and power proportion in 0.5 cm bucket at the target can be improved from 1.07% to 15.85% under closed-loop mode with ideal adaptive optics precision.
参考文献

[1] M. Hartman, S. Restaino, J. Baker et al.. EAGLE/relay mirror technology development[C]. SPIE, 2002, 4724: 108~115

[2] Steven G. Leonard. Laser Options for National Missile Defense[R]. Air Command and Staff College Air University, Alabama, April 1998. 75~84

[3] Marcello Romano, Brij N. Agrawal. Tracking and pointing of target by a bifocal relay mirror spacecraft using attitude control and fast steering mirrors tilting[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, 2002. 5030-1-11

[4] Gregory E. Glaros. Broad departmental application of directed energy systems[C]. Directed Energy Weapon SMI Conference, The Hatton, London, 2004. 7~28

[5] 任国光, 黄吉金. 美国高能激光技术2005年主要进展[J]. 激光与光电子学进展, 2006, 43(6): 5~6

    Ren Guoguang, Huang Jijin. Major progress of U.S.2005′high-energy laser technology[J]. Laser & Optoelectronics Progress, 2006, 43(6): 5~6

[6] Edwards A. Duff, Donald C.Washburn. The magic of relay mirrors[C]. SPIE, 2004, 5413: 137~144

[7] St. Louis MO. Boeing Demonstrates Aerospace Relay Mirror System[R/OL].[2006-08-18]. http://www.spacewar.com/reports/

[8] 任国光. 高能激光武器的现状与发展趋势[J]. 激光与光电子学进展, 2008, 45(9): 67~68

    Ren Guoguang. Current situation and development trend of high energy laser weapon[J]. Laser & Optoelectronics Progress, 2008, 45(9): 62~69

[9] 周仁忠, 阎吉祥. 自适应光学理论[M]. 北京: 北京理工大学出版社, 1996. 22~123

    Zhou Renzhong, Yan Jixiang. Adaptive Optics Theory[M]. Beijing: Beijing Institute of Technology Press, 1996. 22~123

[10] 周仁忠. 自适应光学[M]. 北京: 国防工业出版社, 1996. 5~253

    Zhou Renzhong. Adaptive Optics[M]. Beijing: National Defense Industry Press, 1996. 5~253

[11] 杨慧珍, 蔡冬梅, 陈波 等. 无波前传感自适应光学技术及其在大气光通信中的应用[J]. 中国激光, 2008, 35(5): 680~684

    Yang Huizhen, Cai Dongmei, Chen Bo et al.. Analysis of adaptive optics techniques without a wave-front sensor and its application in atmospheric laser communications[J]. Chinese J. Lasers, 2008, 35(5): 680~684

[12] 王小林. 激光相控阵中的优化式自适应光学研究[D]. 长沙: 国防科学技术大学, 2011. 5~64

    Wang Xiaolin. Study on Optimization Algorithm Based Adaptive Optics in Laser Phased Array[D]. Changsha: National University of Defense Technology, 2011. 5~64

[13] 吴慧云. 中继镜系统光束传输与控制优化研究[D]. 长沙: 国防科学技术大学, 2012. 50~61

    Wu Huiyun. Study on Beam Propagation and Control Optimization in a Relay Mirror System[D]. Changsha: National University of Defense Technology, 2012. 50~61

[14] 张帅, 乔娜, 张彬 等. 环状光束在大气湍流中的传输特性[J]. 光学学报, 2010, 30(11): 3103~3109

    Zhang Shuai, Qiao Na, Zhang Bin et al.. Propagation properties of annular beams in atmospheric turbulence[J]. Acta Optica Sinica, 2010, 30(11): 3103~3109

[15] 徐建武, 王红星, 孙晓明 等. 一种多光束发射和接收FSO系统的信道建模方法[J]. 中国激光, 2012, 39(3): 0305009

    Xu Jianwu, Wang Hongxing, Sun Xiaoming et al.. Method of establishing channel model in multiple-beam transmission and reception FSO systems[J]. Chinese J. Lasers, 2012, 39(3): 0305009

[16] 吴武明, 宁禹, 任亚杰 等. 阵列光束在湍流大气中传输的光强闪烁研究进展[J]. 激光与光电子学进展, 2012, 49(7): 070008

    Wu Wuming, Ni Yu, Ren Yajie et al.. Research progress of scintillations for laser array beams in atmospheric turbulence[J]. Laser & Optoelectronics Progress, 2012, 49(7): 070008

[17] 周朴, 马阎星, 王小林 等. 不同类型合成光束在湍流大气中的传输效率[J]. 中国激光, 2010, 37(3): 733~738

    Zhou Pu, Ma Yanxing, Wang Xiaolin et al.. Propagation efficiency of various combined beams in turbulence atmosphere[J]. Chinese J. Lasers, 2010, 37(3): 733~738

吴慧云, 陈金宝, 孙振海. 激光湍流大气中继传输性能分析[J]. 中国激光, 2013, 40(2): 0213001. Wu Huiyun, Chen Jinbao, Sun Zhenhai. Analysis of Beam Propagation Through a Relay Mirror System in Turbulent Atmosphere[J]. Chinese Journal of Lasers, 2013, 40(2): 0213001.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!