中国激光, 2013, 40 (5): 0504002, 网络出版: 2013-05-07   

基于GPU加速蒙特卡罗建模的时域荧光扩散层析方法

A Methodology on Time-Domain Fluorescence Diffuse Optical Tomography Based on GPU-Accelerated Monte-Carlo Modeling
作者单位
天津大学精密仪器与光电子工程学院, 天津 300072
摘要
为解决含有低散射、高吸收和空腔区域组织内扩散方程光子输运模型的不适用性,发展了基于图形处理单元(GPU)加速的任意复杂组织体光子输运的蒙特卡罗建模方法。在此基础上,提出了基于蒙特卡罗正向模型的时域荧光扩散层析广义脉冲谱技术法。模拟结果表明,与扩散方程相比,基于蒙特卡罗模拟的时域荧光扩散层析对含有低吸收高散射、低吸收低散射、高吸收低散射、高吸收高散射和空腔异质体的复杂组织体中荧光目标体的位置和形状都进行了更准确的重建,从而验证了这种荧光图像重建方法的通用性。
Abstract
A graphics processing unit (GPU) accelerated Monte Carlo (MC) approach is developed for modeling photon migration in an arbitrarily complex turbid medium, where the diffusion equation (DE) might behave an ineffective modeling tool. Then an image reconstruction algorithm of time-domain fluorescence diffuse optical tomography is proposed based on the developed GPU-accelerated MC calculations, within the framework of the generalized pulse spectrum technique. Simulated results show that the MC-based approach retrieves on the position and shape of the targets in complexly structured domain that include low absorbing and high scattering, low absorbing and low scattering, high absorbing and low scattering, high absorbing and high scattering, and/or void regions, with higher accuracy than the DE-based one, demonstrating the improved generality of the proposed method.
参考文献

[1] F. H. Cai, S. L. He. Using graphics processing units to accelerate perturbation Monte Carlo simulation in a turbid medium[J]. J. Biomed. Opt., 2012, 17(4): 040502

[2] A. Doronin, I. Meglinski. Online object oriented Monte Carlo computational tool for the needs of biomedical optics[J]. Biomed. Opt. Express, 2011, 2(9): 2461~2469

[3] M. Freiberger, H. Egger, M. Liebmann et al.. High-performance image reconstruction in fluorescence tomography on desktop computers and graphic hardware[J]. Biomed. Opt. Express, 2011, 2(11): 3207~3222

[4] E. Alerstam, T. Svensson, S. Andersson-Engels. Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration[J]. J. Biomed. Opt., 2008, 13(6): 060504

[5] Q. Q. Fang, D. A. Boas.Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units[J]. Opt. Express, 2009, 17(22): 20178~20190

[6] N. N. Ren, J. M. Liang, X. C. Qu et al.. GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues[J]. Opt. Express, 2010, 18(7): 6811~6823

[7] G. T. Quan, H. Gong, Y. Deng et al.. Monte Carlo-based fluorescence molecular tomography reconstruction method accelerated by a cluster of graphic processing uints[J]. J. Biomed. Opt., 2011, 16(2): 026018

[8] A. T. N. Kumar, S. B. Raymond, A. K. Dunn et al.. A time domain fluorescence tomography system for small animal imaging[J]. IEEE Trans. Med. Imaging, 2008, 27(8): 1152~1163

[9] J. Chen, V. Venugopal, X. Intes. Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates[J]. Biomed. Opt. Express, 2011, 2(4): 871~886

[10] F. Gao, J. Li, L. M. Zhang et al.. Simultaneous fluorescence yield and lifetime tomography from time-resolved transmittances of small-animal-sized phantom[J]. Appl. Opt., 2010, 49(16): 3163~3172

[11] F. Gao, H. J. Zhao, Y. Tanikawa et al.. A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography[J]. Opt. Express, 2006, 14(16): 7109~7124

[12] L. H. Wang, S. L. Jacques, L. Q. Zheng. MCML-Monte Carlo modeling of light transport in multi-layered tissues[J]. Computer Methods and Programs in Biomedicine, 1995, 47(2): 131~146

[13] L. V. Wang, H. Wu. Biomedical Optics: Principle and Imaging[M]. Hoboken: John Wiley & Sons, 2007

[14] A. J. Welch, C. Gardner, R. R. Kortumetal. Propagation of fluorescent light[J]. Las.Surg. Med., 1997, 21(2): 166~178

[15] X. Yi, W. T. Chen, L. H. Wu et al.. GPU-accelerated Monte-Carlo modeling for fluorescence propagation in turbid medium[C]. SPIE, 2012, 8216: 82160U

[16] M. Matsumoto, T. Nishimura. Mersenne twister: a 623-dimensionally equidistributed uniform pseudorandom number generator[J]. ACM Trans. Modeling and Computer Simulation, 1998, 8(1): 3~30

[17] Q. Q. Fang. Mesh-based Monte Carlo method using fast ray-tracing in Plucker coordinates[J]. Biomed. Opt. Express, 2010, 1(1): 165~175

[18] E. M.Balbs, P. J. French. Shape based Monte Carlo code for light transport in complex heterogeneous tissues[J]. Opt. Express, 2007, 15(21): 14086~14098

[19] N. Platis, T. Theoharis. Fast ray-tetrahedron intersection using Plücker coordinates[J]. J. Graphics GPU Game Tools, 2003, 8(4): 37~48

易茜, 武林会, 王欣, 陈玮婷, 张丽敏, 赵会娟, 高峰. 基于GPU加速蒙特卡罗建模的时域荧光扩散层析方法[J]. 中国激光, 2013, 40(5): 0504002. Yi Xi, Wu Linhui, Wang Xin, Chen Weiting, Zhang Limin, Zhao Huijuan, Gao Feng. A Methodology on Time-Domain Fluorescence Diffuse Optical Tomography Based on GPU-Accelerated Monte-Carlo Modeling[J]. Chinese Journal of Lasers, 2013, 40(5): 0504002.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!