强激光与粒子束, 2010, 22 (12): 2848, 网络出版: 2011-01-05   

切向气流对激光辐照树脂基复合材料的影响

Effect of tangential airflow on resin composite irradiated by laser
作者单位
国防科学技术大学 光电科学与工程学院, 长沙 410073
摘要
为了考察切向强迫气流对激光辐照下树脂基复合材料热响应的影响, 基于边界层换热理论, 研究了切向气流与靶面的对流换热系数和热分解气体对表面热交换的覆盖效应, 并用有限差分法对激光辐照下树脂基复合材料的1维热响应模型进行数值求解。数值计算表明:高速切向气流的存在会加速靶材表面与外部环境的热交换, 从而明显降低激光对靶材的加热效率;边界层换热理论给出的对流换热系数和覆盖因子是合理有效的, 适用于数值模拟切向气流对激光辐照下树脂基复合材料热响应的影响;向靶材表面溢出的热分解气体对靶材表面与外部环境的热交换有一定的抑制作用, 但影响较小, 基本可以忽略不计。
Abstract
In order to understand the influence of the tangential airflow on the thermal response of resin composite irradiated by laser, the convective heat transfer coefficient and the blanketing effect are studied by the heat transfer theory of boundary layer, and the one-dimensional thermal response model of resin composite irradiated by laser is solved with finite difference method. The simulation results indicate that the high-speed tangential airflow increases the convective heat exchange of the target surface, consequently reduces the heating efficiency of the laser obviously. The convective heat transfer coefficient and the blanketing factor base on the heat transfer theory of boundary layer are proper, and are suitable for numerical simulation of tangential airflow impacting on the thermal response of resin composite irradiated by laser. The pyrolysis gas has slight impact on the heat exchange between the ambient airflow and the target surface. Therefore, the influence of the pyrolysis gas on the heat exchange can be ignored.
参考文献

[1] 赵剑衡,章冠人,刘绪发.强激光辐照下柱壳体温度场的数值模拟[J].高压物理学报, 1996, 10(1):44-49.(Zhao Jianheng, Zhang Guang-ren, Liu Xufa. Numerical simulation of the temperature distribution on a tank-wall under an intensive laser loading. Chinese Journal of High Pressure Physics, 1996, 10(1):44-49)

[2] 王伟平,唐小松,桂元珍,等.激光对旋转金属壳的加热研究[J].应用激光, 2001, 21(5):319-321.(Wang Weiping, Tang Xiaosong, Gui Yuanzhen, et al. Laser thermal effects on rotating metal shell. Applied Laser, 2001, 21(5):319-321)

[3] 袁红,赵剑衡,谭福利,等.激光辐照下旋转柱壳温度场的数值模拟[J].强激光与粒子束, 2005, 17(5):681-684.(Yuan Hong, Zhao Jianheng, Tan Fuli, et al. Numerical simulation of the temperature distribution on a rotational cylindrical shell under laser irradiation. High Power Laser and Particle Beams, 2005, 17(5):681-684)

[4] 王伟平,刘常龄,王春彦,等.切向气流对激光加热材料的影响[J].强激光与粒子束, 1996, 8(3):373-377.(Wang Weiping, Liu Changling, Wang Chunyan, et al. Tangential airflow influence on laser heating materials. High Power Laser and Particle Beams, 1996, 8(3):373-377)

[5] 张健,黄晨光.外部流场对激光加热运动目标影响的数值模拟[J].强激光与粒子束, 2007, 19(11):1817-1821.(Zhang Jian, Huang Chenguang. Numerical simulation of airflow effect on moving body under laser irradiation. High Power Laser and Particle Beams, 2007, 19(11):1817-1821)

[6] Boley C, Fochs S, Rubenchik A. Lethality effects of a high-power solid-state laser[R]. UCRL-CONF-229010, 2007.

[7] Semak V V, Miller T F. Modeling of laser charring and material removal in fiberglass materials[J]. Journal of Directed Energy, 2006, 2:5-21.

[8] 徐文熙,徐文灿.粘性流体力学[M].北京:北京理工大学出版社,1989.(Xu Wenxi, Xu Wencan. Viscous fluid mechanics. Beijing: Beijing Institute of Technology Press, 1989)

[9] 强希文.激光辐照高速飞行物体壳体温度的理论计算[J].激光杂志, 2001, 22(2):22-25.(Qiang Xiwen. Theoretical calculation of high speed aerocrafts irradiated by laser beams. Laser Journal, 2001, 22(2):22-25)

[10] 郑亚,陈军,鞠玉涛,等.固体火箭发动机传热学[M].北京:北京航空航天大学出版社, 2006.(Zheng Ya, Chen Jun, Ju Yutao, et al. Heat transfer of solid rocket motor. Beijing: Beijing University of Aeronautics and Astronautics Press, 2006)

[11] Schlichting H. Boundary-layer theory[M]. 6th ed. New York: McGraw-Hill, 1968: 647.

[12] Whitten D G, Moffat R J, Kays W M. Heat transfer to a turbulent boundary layer with non-uniform blowing and surface temperature[C]//Proceedings of Fourth International Heat Transfer Conference. 1970.

[13] Bellettre J, Bataille F, Lallemand A. A new approach for the study of turbulent boundary layers with blowing[J]. Int J Heat Mass Transfer, 1999, 42:2905-2920.

[14] Henderson J B, Wiebelt J A, Tant M R. A model for the thermal response of polymer composite materials with experimental verification[J]. Journal of Composite Materials, 1985, (19):579-595.

[15] Torre L, Kenny J M, Maffezzoli A M. Degradation behaviour of a composite material for thermal protection systems. Part 2: Process simulation[J]. Journal of Materials Science, 1998, (33):3145-3149.

[16] 陈博,万红,穆景阳,等.重频激光作用下碳纤维/环氧树脂复合材料热损伤规律[J].强激光与粒子束, 2008, 20(4):547-551.(Chen Bo, Wan Hong, Mu Jingyang, et al. Ablation mechanism of carbon fiber/epoxy composite irradiated by repetition frequency laser. High Power Laser and Particle Beams, 2008, 20(4):547-551)

[17] Nelson J B. Determination of kinetic parameters of six ablation polymers by thermogravimetric analysis[R]. NASA TN-3919, 1967.

[18] Torre L, Kenny J M, Maffezzoli A M. Degradation behaviour of a composite material for thermal protection systems. Part 1: Experimental characterization[J]. Journal of Materials Science, 1998, (33):3137-3143.

[19] Sullivan R M. A coupled solution method for predicting the thermo-structural response of decomposing, expanding polymeric composites[J]. Journal of Composite Materials, 1993, 27(4):408-434.

陈敏孙, 江厚满, 刘泽金. 切向气流对激光辐照树脂基复合材料的影响[J]. 强激光与粒子束, 2010, 22(12): 2848. Chen Minsun, Jiang Houman, Liu Zejin. Effect of tangential airflow on resin composite irradiated by laser[J]. High Power Laser and Particle Beams, 2010, 22(12): 2848.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!