Matter and Radiation at Extremes, 2020, 5 (2): 028201, Published Online: Apr. 1, 2020  

Superconductivity in La and Y hydrides: Remaining questions to experiment and theory

Author Affiliations
1 Center for High Pressure Science and Technology Advanced Research, Shanghai, China
2 Center for High Pressure Science and Technology Advanced Research, Shanghai, China
3 Center for Advanced Radiation Sources, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, USA
4 Federal Scientific Research Center Crystallography and Photonics, Russian Academy of Sciences, 59 Leninskii Pr-t, Moscow 119333, Russia
5 Federal Scientific Research Center Crystallography and Photonics, Russian Academy of Sciences, 59 Leninskii Pr-t, Moscow 119333, Russia
Copy Citation Text

Viktor Struzhkin, Bing Li, Cheng Ji, Xiao-Jia Chen, Vitali Prakapenka, Eran Greenberg, Ivan Troyan, Alexander Gavriliuk, Ho-kwang Mao. Superconductivity in La and Y hydrides: Remaining questions to experiment and theory[J]. Matter and Radiation at Extremes, 2020, 5(2): 028201.

References

[1] N. W. Ashcroft. Metallic hydrogen: A high-temperature superconductor?. Phys. Rev. Lett., 1968, 21(26): 1748-1749.

[2] V. L. Ginzburg. Superfluidity and superconductivity in the universe. J. Stat. Phys., 1969, 1: 3-24.

[3] V. L.Ginzburg, Key Problems in Physics and Astrophysics (Mir, Moscow, 1978).

[4] H. B. Huntington, E. Wigner. On the possibility of a metallic modification of hydrogen. J. Chem. Phys., 1935, 3: 764-770.

[5] D. M. Ceperley, J. M. McMahon. Ground-state structures of atomic metallic hydrogen. Phys. Rev. Lett., 2011, 106(16): 165302.

[6] D. M. Ceperley, J. M. McMahon. High-temperature superconductivity in atomic metallic hydrogen. Phys. Rev. B, 2011, 84(14): 144515.

[7] J. Bardeen, L. N. Cooper, J. R. Schrieffer. Theory of superconductivity. Phys. Rev., 1957, 108: 1175-1204.

[8] R. P. Dias, I. F. Silvera. Observation of the Wigner-Huntington transition to metallic hydrogen. Science, 2017, 355: 715.

[9] A. F. Goncharov, V. V. Struzhkin. Comment on observation of the Wigner-Huntington transition to metallic hydrogen. Science, 2017, 357: eaam9736.

[10] X. D. Liu, et al.. Comment on “Observation of the Wigner-Huntington transition to metallic hydrogen. Science, 2017, 357: eaan2286.

[11] M.Eremets and A. P.Drozdov, “Comments on the claimed observation of the Wigner-Huntington transition to metallic hydrogen,” (2017).

[12] P.Loubeyre, F.Occelli, and P.Dumas, “Comment on: Observation of the Wigner-Huntington transition to metallic hydrogen,” (2017).

[13] B.Stritzker and H.Wühl, “Superconductivity in metal-hydrogen systems,” in Hydrogen in Metals II, edited by G.Alefeld and J.Völkl (Springer, Berlin, Heidelberg, 1978), pp. 243272.

[14] J. J. Gilman. Lithium dihydrogen fluoride—An approach to metallic hydrogen. Phys. Rev. Lett., 1971, 26: 546-548.

[15] N. W. Ashcroft. Hydrogen dominant metallic alloys: High temperature superconductors?. Phys. Rev. Lett., 2004, 92: 187002.

[16] J. A.Flores-Livaset al., “A perspective on conventional high-temperature superconductors at high pressure: Methods and materials,” (2019).

[17] J. Feng, et al.. Structures and potential superconductivity in SiH4 at high pressure: En route to “metallic hydrogen”. Phys. Rev. Lett., 2006, 96(1): 017006.

[18] Y. Li, et al.. The metallization and superconductivity of dense hydrogen sulfide. J. Chem. Phys., 2014, 140(17): 174712.

[19] A. P. Drozdov, et al.. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature, 2015, 525(7567): 73-76.

[20] D. Duan, et al.. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Sci. Rep., 2014, 4: 6968.

[21] F. Peng, et al.. Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity. Phys. Rev. Lett., 2017, 119(10): 107001.

[22] H. Liu, et al.. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl. Acad. Sci. U. S. A., 2017, 114(27): 6990-6995.

[23] Y. Sun, et al.. Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure. Phys. Rev. Lett., 2019, 123: 097001.

[24] M. Ahart, M. Baldini, Z. M. Geballe, R. J. Hemley, H. Liu, Y. Meng, A. K. Mishra, M. Somayazulu. Synthesis and stability of lanthanum superhydrides. Angew. Chem., Int. Ed., 2018, 57: 688-692.

[25] M. Somayazulu, et al.. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett., 2019, 122(2): 027001.

[26] A. P. Drozdov, et al.. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature, 2019, 569(7757): 528-531.

[27] L. Zhang, et al.. Materials discovery at high pressures. Nat. Rev. Mater., 2017, 2(4): 17005.

[28] T. Bi, E. Zurek. High-temperature superconductivity in alkaline and rare earth polyhydrides at high pressure: A theoretical perspective. J. Chem. Phys., 2019, 150: 050901.

[29] V. V. Struzhkin. Superconductivity in compressed hydrogen-rich materials: Pressing on hydrogen. Physica C, 2015, 514: 77-85.

[30] H. Wang, et al.. Superconductive sodalite-like clathrate calcium hydride at high pressures. Proc. Natl. Acad. Sci. U. S. A., 2012, 109(17): 6463-6466.

[31] I.Erreaet al., “Quantum crystal structure in the 250 K superconducting lanthanum hydride,” (2019).

[32] A. P.Drozdovet al., “Superconductivity at 215 K in lanthanum hydride at high pressures,” [cond-mat.supr-con] (2018).

[33] M.Somayazuluet al., “Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures,” [cond-mat.supr-con] (2018).

[34] A. P.Drozdovet al., “Superconductivity at 250 K in lanthanum hydride under high pressures,” [cond-mat.supr-con] (2018).

[35] Y. A. Timofeev, et al.. Improved techniques for measurement of superconductivity in diamond anvil cells by magnetic susceptibility. Rev. Sci. Instrum., 2002, 73: 371-377.

[36] Y. A. Timofeev. Detection of superconductivity in high-pressure diamond anvil cell by magnetic susceptibility technique. Prib. Tekh. Eksper., 1992, 5: 186-189.

[37] V. V. Struzhkin, et al.. Superconductivity at 10 to 17 K in compressed sulfur. Nature, 1997, 390: 382-384.

[38] V. V.Struzhkinet al., “New methods for investigating superconductivity at very high pressures,” in High Pressure Phenomena, edited by R. J.Hemleyet al. (IOS Press/Societа Italiana di Fisica, Amsterdam, 2002), pp. 275296.

[39] V. V.Struzhkinet al. (unpublished).

[40] I. A. Kruglov, et al.. Superconductivity of LaH10 and LaH16: New twist of the story. Phys. Rev. B, 2020, 101: 024508.

[41] I. A.Troyanet al., “Synthesis and superconductivity of yttrium hexahydride Im3¯m-YH6,” (2019).

[42] Y. Li, et al.. Pressure-stabilized superconductive yttrium hydrides. Sci. Rep., 2015, 5: 9948.

[43] C. Heil, et al.. Superconductivity in sodalite-like yttrium hydride clathrates. Phys. Rev. B, 2019, 99: 220502.

[44] D. V. Semenok, et al.. Superconductivity at 161 K in thorium hydride ThH10: Synthesis and properties. Mater. Today, 2019.

[45] A. G. Kvashnin, et al.. High-temperature superconductivity in a Th-H system under pressure conditions. ACS Appl. Mater. Interfaces, 2018, 10(50): 43809-43816.

[46] P. P.Konget al., “Superconductivity up to 243 K in yttrium hydrides under high pressure,” [cond-mat.supr-con] (2019).

[47] D. V. Semenok, et al.. Actinium hydrides AcH10, AcH12, and AcH16 as high-temperature conventional superconductors. J. Phys. Chem. Lett., 2018, 9(8): 1920-1926.

[48] D. V.Semenoket al., “On distribution of superconductivity in metal hydrydes,” (2018).

[49] C. M. Pepin, et al.. Synthesis of FeH5: A layered structure with atomic hydrogen slabs. Science, 2017, 357: 382-385.

[50] P. Loubeyre, et al.. X-ray diffraction and equation of state of hydrogen at megabar pressures. Nature, 1996, 383: 702-704.

[51] N. P. Salke, et al.. Synthesis of clathrate cerium superhydride CeH9 below 100 GPa with atomic hydrogen sublattice. Nat. Commun., 2019, 10: 4453.

Viktor Struzhkin, Bing Li, Cheng Ji, Xiao-Jia Chen, Vitali Prakapenka, Eran Greenberg, Ivan Troyan, Alexander Gavriliuk, Ho-kwang Mao. Superconductivity in La and Y hydrides: Remaining questions to experiment and theory[J]. Matter and Radiation at Extremes, 2020, 5(2): 028201.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!