应用激光, 2018, 38 (2): 295, 网络出版: 2018-06-01   

有限元模拟激光冲击波作用下薄膜零件的变形特性

Finite Element Simulation of Deformation Characteristics of Thin-film Part under Laser Shock Wave
作者单位
江苏省精密模具产品质量监督检验中心, 江苏 昆山 215300
摘要
为了掌握在激光冲击波作用下薄膜零件的翘曲变形规律, 采用有限元软件ABAQUS, 模拟了在不同的加载压力和不同的顶块材质情况下, 薄膜零件在超高应变率下的变形特性。模拟结果表明, 顶块材料的强度会影响残余应力分布和薄膜零件的翘曲变形。较低强度的材质可以获得分布状况较好的表面层残余应力场, 当以刚体(超强材料)为顶块时, 薄膜产生反向变形(呈凸状), 且其变形量随着激光冲击峰值压力的增加而增大, 而以较低强度材质为顶块时, 薄膜趋于正向变形(呈凹状)。
Abstract
To understand the distorting deformation of thin-film parts when subjected to laser shock wave, finite element software ABAQUS was used to simulate the deformation characteristics of thin-film parts at ultra-high strain rates. In the simulations, different loading pressures were applied on the thin-film parts, and different kinds of cushion blocks were also used. The simulation results show that the strength of the cushion block will influence the residual stress distribution and distorting deformation of thin-film parts. The lower strength material can obtain better distribution of surface residual stress field. When a rigid body (super-material) is used as the cushion block, the film is reversely deformed (convex), and its deformation increases with the increase of the peak pressure of the laser shock. With a lower strength material as the cushion block, the film tends to be positively deformed (concave).
参考文献

[1] 陈鹏, 戴玉堂, 代圣力, 等.采用飞秒激光加工的一种F-P应变传感器设计[J].应用激光, 2017, 37(4): 569-573.

[2] 周楚, 胡友旺, 董欣然, 等.飞秒激光刻写全光纤马赫-泽德尔传感器件的研究进展[J].应用激光, 2017, 37(3): 466-474.

[3] ZHANG Y K, ZHANG S Y, ZHANG X R.Investigation of the surface qualities of laser shock-processed zones and the effect on fatigue life of aluminum alloy[J].Surface & Coatings Technology, 1997, 92(1-2): 104-109.

[4] PEYRE P, CHAIEB I, BRAHAM C.FEM calculation of residual stresses induced by laser shock processing in stainless steels[J].Modeling & Simulation in Materials Science &Engineering, 2007, 15(3): 205-221.

[5] 罗新民, 韩光田, 杨坤, 等.304奥氏体不锈钢激光冲击表面改性组织热致回归的微观机制[J].中国激光, 2013, 40(2): 104-110.

[6] LU J Z, LUO K Y, ZHANG Y K, et al.Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel[J].Acta Materialia, 2010, 58(16): 5354-5362.

[7] 任旭东, 张永康, 周建忠, 等.激光参数对Ti6Al4V 钛合金激光冲击成形的影响[J].中国有色金属学报, 2006, 16(11): 1850-1854.

[8] 姜银方, 何玉中. 激光诱导冲击波的预应力成形仿真研究[J]. 激光与红外, 2012, 42(10): 1120-1123.

[9] HFAIEDH N, PEYRE P, SONG H, et al.Finite element analysis of laser shock peening of 2050-T8 aluminum alloy[J].International Journal of Fatigue, 2015(70): 480-489.

[10] WANG C, WANG X, XU Y, et al.Numerical modeling of the confined laser shock peening of the OFHC copper[J].International Journal of Mechanical Sciences, 2016(108-109): 104-114.

[11] FABBRO R, FOURNIER J, BALLARD P, et al.Physical study of laser-produced plasma in confined geometry[J].Journal of Applied Physics, 1990, 68(2): 775-784.

[12] JOHSON G, COOK W.Proceedings of the 7th international symposium on ballistics[C].International Ballistics Committee, The Hague, Netherlands, 1983: 541-547.

章君, 沈阳. 有限元模拟激光冲击波作用下薄膜零件的变形特性[J]. 应用激光, 2018, 38(2): 295. Zhang Jun, Shen Yang. Finite Element Simulation of Deformation Characteristics of Thin-film Part under Laser Shock Wave[J]. APPLIED LASER, 2018, 38(2): 295.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!