激光与光电子学进展, 2020, 57 (18): 180002, 网络出版: 2020-09-02   

光学相干层析血管造影术及其在眼科学中的应用 下载: 1700次

Optical Coherence Tomography Angiography and Its Applications in Ophthalmology
刘颖 1,2,3杨亚良 1,2,*岳献 1,2,3
作者单位
1 中国科学院自适应光学重点实验室, 四川 成都 610209
2 中国科学院光电技术研究所, 四川 成都 610209
3 中国科学院大学, 北京 100049
引用该论文

刘颖, 杨亚良, 岳献. 光学相干层析血管造影术及其在眼科学中的应用[J]. 激光与光电子学进展, 2020, 57(18): 180002.

Ying Liu, Yaliang Yang, Xian Yue. Optical Coherence Tomography Angiography and Its Applications in Ophthalmology[J]. Laser & Optoelectronics Progress, 2020, 57(18): 180002.

参考文献

[1] Chen Z, Milner T E, Srinivas S, et al. Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography[J]. Optics Letters, 1997, 22(14): 1119-1121.

[2] 丁志华, 赵晨, 鲍文, 等. 多普勒光学相干层析成像研究进展[J]. 激光与光电子学进展, 2013, 50(8): 080005.

    Ding Z H, Zhao C, Bao W, et al. Advances in Doppler optical coherence tomography[J]. Laser & Optoelectronics Progress, 2013, 50(8): 080005.

[3] Leitgeb R, Schmetterer L, Drexler W, et al. Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography[J]. Optics Express, 2003, 11(23): 3116-3121.

[4] DrexlerW, Fujimoto JG. Retinal optical coherence tomography imaging[M] ∥Optical Coherence Tomography. Cham: Springer International Publishing, 2015: 1685- 1735.

[5] Barton J, Stromski S. Flow measurement without phase information in optical coherence tomography images[J]. Optics Express, 2005, 13(14): 5234-5239.

[6] An L, Wang R K. In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography[J]. Optics Express, 2008, 16(15): 11438-11452.

[7] Ding Z H, Zhao Y H, Ren H W, et al. Real-time phase-resolved optical coherence tomography and optical Doppler tomography[J]. Optics Express, 2002, 10(5): 236-245.

[8] Spaide R F, Klancnik J M, Cooney M J. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography[J]. JAMA Ophthalmology, 2015, 133(1): 45-50.

[9] Davé D P, Milner T E. Doppler-angle measurement in highly scattering media[J]. Optics Letters, 2000, 25(20): 1523-1525.

[10] Pedersen C J, Huang D, Shure M A, et al. Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography[J]. Optics Letters, 2007, 32(5): 506-508.

[11] Dai C X, Liu X J, Zhang H F, et al. Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography[J]. Investigative Opthalmology & Visual Science, 2013, 54(13): 7998-8003.

[12] Fingler J, Zawadzki R J, Werner J S, et al. Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique[J]. Optics Express, 2009, 17(24): 22190-22200.

[13] Fingler J, Readhead C, Schwartz D M, et al. Phase-contrast OCT imaging of transverse flows in the mouse retina and choroid[J]. Investigative Ophthalmology & Visual Science, 2008, 49(11): 5055-5059.

[14] Fingler J, Schwartz D, Yang C, et al. Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography[J]. Optics Express, 2007, 15(20): 12636-12653.

[15] Kim D Y, Fingler J, Werner J S, et al. In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography[J]. Biomedical Optics Express, 2011, 2(6): 1504-1513.

[16] 陈俊波, 曾亚光, 袁治灵, 等. 基于动态散斑的光学相干层析成像技术[J]. 光学学报, 2018, 38(1): 0111001.

    Chen J B, Zeng Y G, Yuan Z L, et al. Optical coherence tomography based on dynamic speckle[J]. Acta Optica Sinica, 2018, 38(1): 0111001.

[17] Mariampillai A, Standish B A, Moriyama E H, et al. Speckle variance detection of microvasculature using swept-source optical coherence tomography[J]. Optics Letters, 2008, 33(13): 1530-1532.

[18] Mariampillai A. Leung M K K, Jarvi M, et al. Optimized speckle variance OCT imaging of microvasculature[J]. Optics Letters, 2010, 35(8): 1257-1259.

[19] Enfield J, Jonathan E, Leahy M. In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT)[J]. Biomedical Optics Express, 2011, 2(5): 1184-1193.

[20] Jonathan E, Enfield J, Leahy M J. Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images[J]. Journal of Biophotonics, 2011, 4(9): 583-587.

[21] McNamara P M, Subhash H M, Leahy M J. In vivo full-field en face correlation mapping optical coherence tomography[J]. Journal of Biomedical Optics, 2013, 18(12): 126008.

[22] Dalimier E, Salomon D. Full-field optical coherence tomography: a new technology for 3D high-resolution skin imaging[J]. Dermatology (Basel, Switzerland), 2012, 224(1): 84-92.

[23] Jia Y L, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Optics Express, 2012, 20(4): 4710-4725.

[24] Gao S S, Liu G J, Huang D, et al. Optimization of the split-spectrum amplitude-decorrelation angiography algorithm on a spectral optical coherence tomography system[J]. Optics Letters, 2015, 40(10): 2305-2308.

[25] Liu Z P, Wang H, Jiang H, et al. Quantitative analysis of conjunctival microvasculature imaged using optical coherence tomography angiography[J]. Eye and Vision, 2019, 6(1): 1-9.

[26] Sweeney A R, Zhang Q Q, Wang R K, et al. Optical coherence tomography microangiography imaging of circumscribed choroidal hemangioma[J]. Ophthalmic Surgery, Lasers & Imaging Retina, 2018, 49(2): 134-137.

[27] Zhi Z W, Cepurna W O, Johnson E C, et al. Impact of intraocular pressure on changes of blood flow in the retina, choroid, and optic nerve head in rats investigated by optical microangiography[J]. Biomedical Optics Express, 2012, 3(9): 2220-2233.

[28] Zhi Z W, Qin W, Wang J G, et al. 4D optical coherence tomography-based micro-angiography achieved by 1.6-MHz FDML swept source[J]. Optics Letters, 2015, 40(8): 1779-1782.

[29] 高峰, 樊金宇, 孔文, 等. 光学相干层析技术在血管流场检测方面的研究进展[J]. 中国激光, 2018, 45(2): 0207019.

    Gao F, Fan J Y, Kong W, et al. Research progress on optical coherence tomography in detecting vascular flow field[J]. Chinese Journal of Lasers, 2018, 45(2): 0207019.

[30] Liu G J, Jia Y L, Pechauer A D, et al. Split-spectrum phase-gradient optical coherence tomography angiography[J]. Biomedical Optics Express, 2016, 7(8): 2943-2954.

[31] Zhang A Q, Zhang Q Q, Chen C L, et al. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison[J]. Journal of Biomedical Optics, 2015, 20(10): 100901.

[32] Gorczynska I, Migacz J V, Zawadzki R J, et al. Comparison of amplitude-decorrelation, speckle-variance and phase-variance OCT angiography methods for imaging the human retina and choroid[J]. Biomedical Optics Express, 2016, 7(3): 911-942.

[33] Chalam K V, Sambhav K. Optical coherence tomography angiography in retinal diseases[J]. Journal of Ophthalmic & Vision Research, 1900, 11(1): 84-92.

[34] de Carlo T E, Bonini Filho M A, Baumal C R, et al. Evaluation of preretinal neovascularization in proliferative diabetic retinopathy using optical coherence tomography angiography[J]. Ophthalmic Surgery, Lasers & Imaging Retina, 2016, 47(2): 115-119.

[35] Sandhu H S, Eladawi N, Elmogy M, et al. Automated diabetic retinopathy detection using optical coherence tomography angiography: a pilot study[J]. The British Journal of Ophthalmology, 2018, 102(11): 1564-1569.

[36] de Carlo T E, Chin A T, Bonini Filho M A, et al. Detection of microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2364-2370.

[37] Freiberg F J, Pfau M, Wons J, et al. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy[J]. Graefe's Archive for Clinical and Experimental Ophthalmology, 2016, 254(6): 1051-1058.

[38] 王丽雯, 崔林, 邹吉新, 等. OCTA在视网膜静脉阻塞诊疗中的应用价值[J]. 国际眼科杂志, 2019, 19(8): 1361-1364.

    Wang L W, Cui L, Zou J X, et al. Application value of OCTA examination in diagnosis and treatment of retinal vein occlusion[J]. International Eye Science, 2019, 19(8): 1361-1364.

[39] 曾苗, 陈晓, 宋艳萍, 等. 视网膜中央静脉阻塞患眼光相干断层扫描血管成像与荧光素眼底血管造影检查结果对比分析[J]. 中华眼底病杂志, 2016, 32(4): 362-366.

    Zeng M, Chen X, Song Y P, et al. Consistency analysis of optical coherence tomography angiography and fundus fluorescein angiography in the diagnosis of central retinal vein occlusion[J]. Chinese Journal of Ocular Fundus Diseases, 2016, 32(4): 362-366.

[40] de Castro-Abeger A H, de Carlo T E, Duker J S, et al. Optical coherence tomography angiography compared to fluorescein angiography in branch retinal artery occlusion[J]. Ophthalmic Surgery, Lasers & Imaging Retina, 1900, 46(10): 1052-1054.

[41] Wu S C, Villegas V M, Kovach J L. Optical coherence tomography angiography of combined central retinal artery and vein occlusion[J]. Case Reports in Ophthalmological Medicine, 2018, 2018: 4342158.

[42] Yu S S, Lu J, Cao D, et al. The role of optical coherence tomography angiography in fundus vascular abnormalities[J]. BMC Ophthalmology, 2016, 16(1): 1-7.

[43] Loo J, Fang L Y, Cunefare D, et al. Deep longitudinal transfer learning-based automatic segmentation of photoreceptor ellipsoid zone defects on optical coherence tomography images of macular telangiectasia type 2[J]. Biomedical Optics Express, 2018, 9(6): 2681-2698.

[44] Toto L, Di Antonio L, Mastropasqua R, et al. Multimodal imaging of macular telangiectasia type 2: focus on vascular changes using optical coherence tomography angiography[J]. Investigative Ophthalmology & Visual Science, 2016, 57(9): 268-276.

[45] Dogan B, Erol M K, Akidan M, et al. Retinal vascular density evaluated by optical coherence tomography angiography in macular telangiectasia type 2[J]. International Ophthalmology, 2019, 39(10): 2245-2256.

[46] Kumar V, Kumawat D, Kumar P. Swept source optical coherence tomography analysis of choroidal thickness in macular telangiectasia type 2: a case-control study[J]. Graefe's Archive for Clinical and Experimental Ophthalmology, 2019, 257(3): 567-573.

[47] Villegas V M, Kovach J L. Optical coherence tomography angiography of macular telangiectasia type 2 with associated subretinal neovascular membrane[J]. Case Reports in Ophthalmological Medicine, 2017, 2017: 8186134.

[48] Jia Y L, Bailey S T, Wilson D J, et al. Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration[J]. Ophthalmology, 2014, 121(7): 1435-1444.

[49] Ma J, Desai R, Nesper P, et al. Optical coherence tomographic angiography imaging in age-related macular degeneration[J]. Ophthalmology and Eye Diseases, 2017, 9: 1179172116686075.

[50] Ratnapriya R, Chew E Y. Age-related macular degeneration-clinical review and genetics update[J]. Clinical Genetics, 2013, 84(2): 160-166.

[51] Nassisi M, Shi Y, Fan W Y, et al. Choriocapillaris impairment around the atrophic lesions in patients with geographic atrophy: a swept-source optical coherence tomography angiography study[J]. The British Journal of Ophthalmology, 2019, 103(7): 911-917.

[52] Yannuzzi L A, Rohrer K T, Tindel L J, et al. Fluorescein angiography complication survey[J]. Ophthalmology, 1986, 93(5): 611-617.

[53] de Carlo T E, Salz D A, Waheed N K, et al. Visualization of the retinal vasculature using wide-field montage optical coherence tomography angiography[J]. Ophthalmic Surgery, Lasers & Imaging Retina, 2015, 46(6): 611-616.

[54] Gao S S, Jia Y L, Zhang M, et al. Optical coherence tomography angiography[J]. Investigative Opthalmology & Visual Science, 2016, 57(9): 27-36.

[55] Mastropasqua R, Toto L, Mastropasqua A, et al. Foveal avascular zone area and parafoveal vessel density measurements in different stages of diabetic retinopathy by optical coherence tomography angiography[J]. International Journal of Ophthalmology, 2017, 10(10): 1545-1551.

[56] Abouei E. Lee A M D, Pahlevaninezhad H, et al. Correction of motion artifacts in endoscopic optical coherence tomography and autofluorescence images based on azimuthal en face image registration[J]. Journal of Biomedical Optics, 2018, 23(1): 1-13.

[57] Chen Y W, Hong Y J, Makita S, et al. Eye-motion-corrected optical coherence tomography angiography using Lissajous scanning[J]. Biomedical Optics Express, 2018, 9(3): 1111-1129.

[58] Chen F K, Viljoen R D, Bukowska D M. Classification of image artefacts in optical coherence tomography angiography of the choroid in macular diseases[J]. Clinical & Experimental Ophthalmology, 2016, 44(5): 388-399.

[59] Laslandes M, Salas M, Hitzenberger C K, et al. Influence of wave-front sampling in adaptive optics retinal imaging[J]. Biomedical Optics Express, 2017, 8(2): 1083-1100.

[60] Wells-Gray E M M, Choi S S, Zawadzki R J, et al. Volumetric imaging of rod and cone photoreceptor structure with a combined adaptive optics-optical coherence tomography-scanning laser ophthalmoscope[J]. Journal of Biomedical Optics, 2018, 23.

[61] Pedersen H R, Gilson S J, Dubra A, et al. Multimodal imaging of small hard retinal drusen in young healthy adults[J]. The British Journal of Ophthalmology, 2018, 102(1): 146-152.

[62] Zang P X, Liu G J, Zhang M, et al. Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram[J]. Biomedical Optics Express, 2016, 7(7): 2823-2836.

[63] Camino A, Zhang M, Gao S S, et al. Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology[J]. Biomedical optics express, 2016, 7(10): 3905-3915.

刘颖, 杨亚良, 岳献. 光学相干层析血管造影术及其在眼科学中的应用[J]. 激光与光电子学进展, 2020, 57(18): 180002. Ying Liu, Yaliang Yang, Xian Yue. Optical Coherence Tomography Angiography and Its Applications in Ophthalmology[J]. Laser & Optoelectronics Progress, 2020, 57(18): 180002.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!