光学学报, 2020, 40 (4): 0426001, 网络出版: 2020-02-17  

金属-介质-金属纳米天线阵列的模式特性及荧光发射调控 下载: 1725次

Mode Properties and Fluorescence Emission Mediation of Metal-Dielectric-Metal Nanoantenna Array
作者单位
中国科学技术大学光学与光学工程系安徽省光电子科学与技术重点实验室, 安徽 合肥 230026
引用该论文

王晗, 臧昊峰, 鲁拥华, 王沛. 金属-介质-金属纳米天线阵列的模式特性及荧光发射调控[J]. 光学学报, 2020, 40(4): 0426001.

Han Wang, Haofeng Zang, Yonghua Lu, Pei Wang. Mode Properties and Fluorescence Emission Mediation of Metal-Dielectric-Metal Nanoantenna Array[J]. Acta Optica Sinica, 2020, 40(4): 0426001.

参考文献

[1] Starowicz Z, Wojnarowska-Nowak R, Ozga P, et al. The tuning of the plasmon resonance of the metal nanoparticles in terms of the SERS effect[J]. Colloid and Polymer Science, 2018, 296(6): 1029-1037.

[2] Rajput M, Sinha R K. Effect of different plasmonic nano-inclusion on double negative-semiconductor photonic crystal in visible region: gain assistance and all-angle negative refraction[J]. Journal of Electronic Science and Technology, 2010, 8(1): 10-15.

[3] Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions[J]. Science, 2006, 311(5758): 189-193.

[4] Pelton M. Modified spontaneous emission in nanophotonic structures[J]. Nature Photonics, 2015, 9(7): 427-435.

[5] Schuller J A, Barnard E S, Cai W S, et al. Plasmonics for extreme light concentration and manipulation[J]. Nature Materials, 2010, 9(3): 193-204.

[6] Hess O, Pendry J B, Maier S A, et al. Active nanoplasmonic metamaterials[J]. Nature Materials, 2012, 11(7): 573-584.

[7] Bauch M, Dostalek J. Collective localized surface plasmons for high performance fluorescence biosensing[J]. Optics Express, 2013, 21(17): 20470-20483.

[8] El-Sayed I H, Huang X H, El-Sayed M A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer[J]. Nano Letters, 2005, 5(5): 829-834.

[9] Zhou W, Dridi M, Suh J Y, et al. Lasing action in strongly coupled plasmonic nanocavity arrays[J]. Nature Nanotechnology, 2013, 8(7): 506-511.

[10] Xu Q, Liu F, Meng W S, et al. Plasmonic core-shell metal-organic nanoparticles enhanced dye-sensitized solar cells[J]. Optics Express, 2012, 20(S6): A898-A907.

[11] Tsakmakidis K L, Boyd R W, Yablonovitch E, et al. Large spontaneous-emission enhancements in metallic nanostructures: towards LEDs faster than lasers [Invited][J]. Optics Express, 2016, 24(16): 17916-17927.

[12] Wei D, Chen S, Liu Q. Review of fluorescence suppression techniques in Raman spectroscopy[J]. Applied Spectroscopy Reviews, 2015, 50(5): 387-406.

[13] Willets K A, van Duyne R P. Localized surface plasmon resonance spectroscopy and sensing[J]. Annual Review of Physical Chemistry, 2007, 58(1): 267-297.

[14] Ming T, Zhao L, Yang Z, et al. Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods[J]. Nano Letters, 2009, 9(11): 3896-3903.

[15] Akselrod G M, Argyropoulos C, Hoang T B, et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas[J]. Nature Photonics, 2014, 8(11): 835-840.

[16] Zhou W, Odom T W. Tunable subradiant lattice plasmons by out-of-plane dipolar interactions[J]. Nature Nanotechnology, 2011, 6(7): 423-427.

[17] Kravets V G, Schedin F, Grigorenko A N. Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons inarrays of metallic nanoparticles[J]. Physical Review Letters, 2008, 101(8): 087403.

[18] Tang C J, Zhan P, Cao Z S, et al. Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials[J]. Physical Review B, 2011, 83(4): 041402.

[19] Alaee R, Albooyeh M, Yazdi M, et al. Magnetoelectric coupling in nonidentical plasmonic nanoparticles: theory and applications[J]. Physical Review B, 2015, 91(11): 115119.

[20] 任远. 金属-介质-金属复合超表面的制备、模式特性及其荧光辐射调控研究[D]. 合肥:中国科学技术大学, 2018: 34- 50.

    RenY. Research on the fabrication, mode properties and fluorescence emission mediation of metal-dielectric-metal composite metasurface[D]. Hefei:University of Science and Technology of China, 2018: 34- 50.

[21] Palik ED. Handbook of optical constants of solids[M]. New York: Academic Press, 1985: 350- 357.

[22] Liu S, Vaskin A, Campione S, et al. Huygens’ metasurfaces enabled by magnetic dipole resonance tuning in split dielectric nanoresonators[J]. Nano Letters, 2017, 17(7): 4297-4303.

[23] Bharadwaj P, Novotny L. Spectral dependence of single molecule fluorescence enhancement[J]. Optics Express, 2007, 15(21): 14266-14274.

[24] Magde D, Wong R, Seybold P G. Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents:improved absolute standards for quantum yields[J]. Photochemistry and Photobiology, 2007, 75(4): 327-334.

[25] Ford G W, Weber W H. Electromagnetic interactions of molecules with metal surfaces[J]. Physics Reports, 1984, 113(4): 195-287.

[26] Kinkhabwala A, Yu Z F, Fan S H, et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna[J]. Nature Photonics, 2009, 3(11): 654-657.

[27] Bauch M, Toma K, Toma M, et al. Plasmon-enhanced fluorescence biosensors: a review[J]. Plasmonics, 2014, 9(4): 781-799.

[28] Rose A, Hoang T B. McGuire F, et al. Control of radiative processes using tunable plasmonic nanopatch antennas[J]. Nano Letters, 2014, 14(8): 4797-4802.

王晗, 臧昊峰, 鲁拥华, 王沛. 金属-介质-金属纳米天线阵列的模式特性及荧光发射调控[J]. 光学学报, 2020, 40(4): 0426001. Han Wang, Haofeng Zang, Yonghua Lu, Pei Wang. Mode Properties and Fluorescence Emission Mediation of Metal-Dielectric-Metal Nanoantenna Array[J]. Acta Optica Sinica, 2020, 40(4): 0426001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!