Author Affiliations
Abstract
1 Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, China
2 Advanced Laser Technology Laboratory of Anhui Province, Hefei 230026, China
The compact, sensitive, and multidimensional displacement measurement device plays a crucial role in semiconductor manufacture and high-resolution optical imaging. The metasurface offers a promising solution to develop high-precision displacement metrology. In this work, we proposed and experimentally demonstrated a two-dimensional displacement (XZ) measurement device by a dielectric metasurface. Both transversal and longitudinal displacements of the metasurface can be obtained by the analysis of the interference optical intensity that is generated by the deflected light beams while the metasurface is under linearly polarized incidence. We experimentally demonstrated that displacements down to 5.4 nm along the x-axis and 0.12 µm along the z-axis can be resolved with a 900 µm × 900 µm metasurface. Our work opens up new possibilities to develop a compact high-precision multidimensional displacement sensor.
metasurface transversal and longitudinal displacement measurement 
Chinese Optics Letters
2024, 22(2): 021202
作者单位
摘要
1 中国科学技术大学国家同步辐射实验室,安徽 合肥 230029
2 中国科学技术大学光学与光学工程系,安徽 合肥 230026
离子轰击固体表面诱导的纳米结构具有小周期(10~100 nm)、大面积、准周期的特点。利用氩离子轰击在减反膜上制备出横向特征尺寸在100 nm附近、横向周期性与纵向连续性逐步明显的准周期纳米波纹结构。为了增大表征面积,利用极紫外散射法表征了上述自组织纳米波纹的形貌特征。结果显示,面内和锥角模式的极紫外散射法所获得的样品横向和纵向形貌特征,均能够与原子力扫描显微镜所获得的样品形貌特征相对应,这初步说明了此方法表征准周期纳米波纹结构基本形貌特征的可行性,为后续的定量分析提供基础。同时,利用极紫外同步辐射光表征的自组织纳米结构面积达到了mm2量级,将合肥光源计量光束线的表征范围拓展到自组织纳米结构,这也为未来探索极紫外光刻掩模的散射表征等研究提供参考。
极紫外 散射测量 同步辐射 离子轰击 自组织纳米结构 准周期 
光学学报
2022, 42(19): 1936001
作者单位
摘要
中国科学技术大学光学与光学工程系安徽省光电子科学与技术重点实验室, 安徽 合肥 230026
设计一种支持多模式的金属-介质-金属纳米天线阵列结构,分析结构中的模式特性及其调控的发光过程。利用时域有限差分的方法模拟该结构的透射谱和电场分布,分析结构中局域表面等离激元模式和磁等离激元共振模式的特性以及激发光偏振调控的模式变化。将偶极子光源放在介质层中,模拟该天线阵列结构调控荧光分子的发光过程。结果表明:荧光分子的辐射和非辐射衰减速率增强因子、量子效率以及偏振特性受到了所提结构模式的有效调控;在一定波长范围内改变激发光的偏振方向可以对发光谱进行调谐。
物理光学 局域表面等离激元 磁等离激元 时域有限差分 荧光辐射 
光学学报
2020, 40(4): 0426001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!