红外与毫米波学报, 2013, 32 (1): 6, 网络出版: 2013-03-25  

应用于毫米波无线接收系统的高集成化LTCC AIP设计

An integrated LTCC AIP for millimeter wave wireless receiving system
作者单位
北京理工大学 信息与电子学院, 北京 100081
摘要
介绍了一种基于低温共烧陶瓷工艺的新型高度集成毫米波无源接收前端, 该前端由阵列天线、馈电网络和带通滤波器构成.上述无源器件以天线集成封装方式经过一体化设计, 并应用于毫米波无线系统.首先, 设计了2×2线极化空气腔阵列天线, 通过采用新颖的内埋空气腔体结构, 使天线最大增益提高了2.9 dB.其次, 将具有双层谐振结构的三阶小型化发卡型带通滤波器和天线馈电网络进行一体化设计.该滤波器测试结果显示:插入损耗为1.9 dB, 3 dB相对带宽为8.1%(中心频率为34 GHz).最后将上述天线和滤波网络进行一体化设计, 实现了三维无线接收前端.在集成结构中, 通过采用金属柱栅栏抑制了寄生模式.测试结果显示天线最大增益可达14.3dB, 通过集成滤波馈电网络, 其阻抗带宽为2.8 GHz.该新型一体化集成前端系统具有良好的射频性能, 可作为全集成无源前端应用于Ka波段无线系统中.
Abstract
This paper demonstrates a novel highly integrated LTCC MMW passive receiving front-end which consists of antenna array, feed network and embedded band pass filter. The above passive components were co-designed as an antenna-in-package (AIP) solution for millimeter wave wireless system. Firstly, 2×2 linear patch antenna array with air cavity had been designed. Its maximum gain was increased 2.9dB by adopting a novel embedded air cavity. Secondly, a 3-pole miniaturized hairpin filter which was composed of three double layer resonators had been co-designed with the feed network. The filter exhibits an insertion loss of 1.9 dB and a 3 dB bandwidth about 8.1% at the center frequency of 34 GHz. Finally, the above antenna and filtering network were co-designed as a 3-D wireless receiving front-end. In the integrated structure, via fences were introduced to suppress parasitic modes. The measured maximum gain of the array antenna is 14.3dB and its impedance bandwidth (VSWR<2) is 2.8GHz(32.9~35.7GHz)with the filtering feed network. The excellent overall performance of the novel array antenna shows great potential as a fully integrated passive front-end solution for a Ka-band wireless system.
参考文献

[1] Lee J H, Kidera. Fully integrated passive front-end solutions for a v-band ltcc wireless system[J], IEEE Antennas and Wireless Propagation Letter, 2007, 6: 285-288.

[2] Omar A Nova, Juan C Bohórquez, et al. Filter-antenna module using substrate integrated waveguide cavities[J], IEEE Antennas and Wireless Propagation Letter, 2011, 10:59-62.

[3] QueudetF, Froppier B, Mahe Y, et al. Study of a leaky waveguide for the design of filtering antennas[C], Proc. 2003 IEEE Europ. Microw. Symp, Munich, Germany, 2003:943-946.

[4] Zhang Y P. Integration of microstrip antenna on ceramic ball grid array package[J].Electon.Lett, 2002, 38:14-16.

[5] Zhang Chun-lin, Terahertz Sensing and Imaging. National Defense Industry Press[M].

[6] Joy Laskar, Babak Matinpour, Modern Receiver Front-Ends[M], New Jersey: Wiley, 2004:8-9.

[7] Zhang Y P, Sun M,, Antennas-in-Package Design for Wirebond Interconnection to Highly Integrated 60-GHz Radios[J], IEEE Trans. Antennas and Propagation, 2009, 57, 10:2842-2852.

[8] Antti E Lamminen, Jussi Sily,, Antti R.Vimpari.60-GHz Patch Antennas and Arrays on LTCC With Embedded-Cavity Substrates[J], IEEE Trans. Antennas and Propagation, 2008, 56, 9, pp:2865-2874.

[9] NawawyEl, KorzecM .The design of 80 GHz antenna array on LTCC substrate [C].IEEE GCC Conference and Exhibition(GCC), 2011, pp: 217-220.

[10] Panther, Petosa. A wideband array of stacked patch antennas using embedded air cavities in LTCC [J].IEEE Microwave and Wireless Components Letters, 2005: 916-918.

[11] MaillouxR J . Phased Array Antenna Handbook[M], Norwood, MA:Artech House, 1994.

[12] Zhang Yun-chi, Kawthar A Zaki, Andrew J Piloto, et al. Miniature Broadband Bandpass Filters Using Double-Layer Coupled Stripline Resonators[J]. IEEE Trans. Microw. Theory Tech., 2006, vol. 54, no.8, pp:3370-3377.

[13] Hong Jia-shen, M J Lancaster. Microstrip Filters for RF/Microwave Applications[M]. New York: Wiley, 2001, pp: 255-262.

袁博, 于伟华, 吕昕. 应用于毫米波无线接收系统的高集成化LTCC AIP设计[J]. 红外与毫米波学报, 2013, 32(1): 6. YUAN Bo, YU Wei-Hua, LV Xin. An integrated LTCC AIP for millimeter wave wireless receiving system[J]. Journal of Infrared and Millimeter Waves, 2013, 32(1): 6.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!