中国激光, 2014, 41 (11): 1108003, 网络出版: 2014-10-08   

基于间隙光纤光栅的微间隙与温度同时测量技术

Gap Fiber Bragg Grating Based Micro-Gap and Temperature Simultaneous Measurement Technology
作者单位
1 北京航空航天大学精密光机电一体化技术教育部重点实验室, 北京 100191
2 北京航空航天大学惯性技术国防科技重点实验室, 北京 100191
摘要
间隙光纤光栅(g-FBG)兼具菲索干涉和相移光纤光栅(PSFBG)的特征,仿真研究和分析了g-FBG反射谱中菲索干涉谱型和相移光纤光栅谱型对微间隙和温度的敏感特性,提出了一种同时测量微间隙和温度的方法,并建立了测量模型。搭建g-FBG实验系统,测试了不同间隙下的反射谱,验证了仿真结果,数据分析表明微间隙测量误差小于±5 nm;制作g-FBG传感头,实现了位移和温度的同时测量,温度灵敏度为8.3 pm/℃,测量精度可达0.1 ℃。基于g-FBG的微间隙与温度同时测量技术具有精度高、体积小和设计灵活等优点。通过建立微间隙与温度的关联方程,可补偿由于温度变化对间隙测量的影响,实现温度无关的微间隙测量。
Abstract
Gap fiber Bragg grating (g-FBG) exhibits both Fizeau interference and phase-shifted fiber Bragg grating (PSFBG) spectrum. Their different sensitivities to micro-gap and temperature are demonstrated respectively, based on which a micro-gap and temperature simultaneous measurement method is proposed. The reflective spectra with different micro-gaps are tested by g-FBG experiments, which fits the simulation results. Data analysis shows that the micro-gap measurement error is less than ±5 nm. A g-FBG based sensor is made and simultaneous micro-gap and temperature measurement is obtained. Temperature measurement is achieved with a sensitivity of 8.3 pm/℃ and a low error of 0.1 ℃. This proposed g-FBG based simultaneous micro-gap and temperature measurement exhibits the advantages of high-accuracy, compact size, and flexible designing. With the related equation between temperature and micro-gap, temperature-induced gap change can be compensated and the temperature-independent micro-gap measurement is able to implement.
参考文献

[1] Y J Rao. Recent progress in applications of in-fibre Bragg grating sensors[J]. Optics and Lasers in Engineering, 1999, 31(4): 297-324.

[2] 张毅, 庄志, 黎启胜, 等. 一种温度补偿式光纤氢气检测技术[J]. 仪器仪表学报, 2012, 33(7): 1573-1578.

    Zhang Yi, Zhuang Zhi, Li Qisheng, et al.. Temperature compensation type optical fiber hydrogen concentration measurement technique[J]. Chinese Journal of Scientific Instrument, 2012, 33(7): 1573-1578.

[3] M G Xu, J L Archambault, L Reekie, et al.. Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors[J]. Electronics Letters, 1994, 30(13): 1085-1087.

[4] 倪凯, 董新永, 王剑锋, 等. 单光纤光栅对温度与应变的同步测量[J]. 光电子·激光, 2010, 12(12): 1822-1824.

    Ni Kai, Dong Xinyong, Wang Jianfeng, et al.. Strain and temperature simultaneous measurement using a single fiber Bragg grating[J]. J Optoelectronics·Laser, 2010, 12(12): 1822-1824.

[5] 黄锐, 蔡海文, 瞿荣辉, 等. 一种同时测量温度和应变的光纤光栅传感器[J]. 中国激光, 2005, 32(2): 232-235.

    Huang Rui, Cai Haiwen, Qu Ronghui, et al.. Separately measurement of strain and temperature using a single fiber Bragg grating[J]. Chinese J Lasers, 2005, 32(2): 232-235.

[6] 童峥嵘, 郭阳, 杨秀峰, 等. 基于Lyot 滤波器和长周期光纤光栅的温度与应变的同时测量[J]. 中国激光, 2012, 39(3): 0305002.

    Tong Zhengrong, Guo Yang, Yang Xiufeng, et al.. Simultaneous measurement of temperature and strain based on a long-period fiber grating combined with a Lyot fiber filter in a linear configuration[J]. Chinese J Lasers, 2012, 39(3): 0305002.

[7] Y Yang, X Liu, X Zhang, et al.. Gap FBG and its application in tunable narrow linewidth fibre laser[J]. Optics & Laser Technology, 2014, 56: 114-118.

[8] 饶云江, 曾祥楷, 朱永, 等. 非本征型法布里珀罗干涉仪光纤布拉格光栅应变温度传感器及其应用[J]. 光学学报, 2002, 22(1): 85-88.

    Rao Yunjiang, Zeng Xiangkai, Zhu Yong, et al.. EFPI/FBG strain-temperature sensor and application[J]. Acta Optica Sinica, 2002, 22(1): 85-88.

[9] P Ferdinand, O Ferragu, J L Lechien, et al.. Mine operating accurate stability control with optical fiber sensing and Bragg grating technology: the European BRITE/EURAM STABILOS project[J]. J Lightwave Technol, 1995, 13(7): 1303-1313.

[10] 刘永红, 阮迎澜, 江山, 等. 温度不灵敏光纤光栅[J]. 中国激光, 1997, 24(10): 895-898.

    Liu Yonghong, Ruan Yinglan, Jiang Shan, et al.. A temperature insensitive fiber grating[J]. Chinese J Lasers, 1997, 24(10): 895-898.

胡军, 杨远洪, 刘学静. 基于间隙光纤光栅的微间隙与温度同时测量技术[J]. 中国激光, 2014, 41(11): 1108003. Hu Jun, Yang Yuanhong, Liu Xuejing. Gap Fiber Bragg Grating Based Micro-Gap and Temperature Simultaneous Measurement Technology[J]. Chinese Journal of Lasers, 2014, 41(11): 1108003.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!