中国激光, 2018, 45 (2): 0207014, 网络出版: 2018-02-28   

多光子显微技术在医学诊断中的应用 下载: 1604次特邀综述

Application of Multiphoton Microscopy in Disease Diagnosis
作者单位
福建师范大学医学光电科学与技术教育部重点实验室, 福建省光子技术重点实验室, 福建 福州 350007
引用该论文

林宏心, 左宁, 卓双木, 陈建新. 多光子显微技术在医学诊断中的应用[J]. 中国激光, 2018, 45(2): 0207014.

Lin Hongxin, Zuo Ning, Zhuo Shuangmu, Chen Jianxin. Application of Multiphoton Microscopy in Disease Diagnosis[J]. Chinese Journal of Lasers, 2018, 45(2): 0207014.

参考文献

[1] Keahey P, Ramalingam P, Schmeler K, et al. Differential structured illumination microendoscopy for in vivo imaging of molecular contrast agents[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(39): 10769-10773.

[2] Quang T, Schwarz R A, Dawsey S M, et al. A tablet-interfaced high-resolution microendoscope with automated image interpretation for real-time evaluation of esophageal squamous cell neoplasia[J]. Gastrointestinal Endoscopy, 2016, 84(5): 834-841.

[3] Skala M C, Squirrell J M, Vrotsos K M, et al. Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues[J]. Cancer Research, 2005, 65(4): 1180-1186.

[4] Leggett C L, Wang K K. Computer-aided diagnosis in GI endoscopy: looking into the future[J]. Gastrointestinal Endoscopy, 2016, 84(5): 842-844.

[5] Paoli J, Smedh M, Wennberg A M, et al. Multiphoton laser scanning microscopy on non-melanoma skin cancer: morphologic features for future non-invasive diagnostics[J]. Journal of Investigative Dermatology, 2008, 128(5): 1248-1255.

[6] Dimitrow E, Ziemer M, Koehler M J, et al. Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma[J]. Journal of Investigative Dermatology, 2009, 129(7): 1752-1758.

[7] Cicchi R, Vogler N, Kapsokalyvas D, et al. From molecular structure to tissue architecture: collagen organization probed by SHG microscopy[J]. Journal of Biophotonics, 2013, 6(2): 129-142.

[8] Chen S Y, Chen S U, Wu H Y, et al. In vivo virtual biopsy of human skin by using noninvasive higher harmonic generation microscopy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(3): 478-492.

[9] Jung J C, Mehta A D, Aksay E, et al. In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy[J]. Journal of Neurophysiology, 2004, 92(5): 3121-3133.

[10] Lee H S, Liu Y, Chen H C, et al. Optical biopsy of liver fibrosis by use of multiphoton microscopy[J]. Optics Letters, 2004, 29(22): 2614-2616.

[11] Rogart J N, Nagata J, Loeser C S, et al. Multiphoton imaging can be used for microscopic examination of intact human gastrointestinal mucosa ex vivo[J]. Clinical Gastroenterology and Hepatology, 2008, 6(1): 95-101.

[12] Williams R M, Flesken-Nikitin A, Ellenson L H, et al. Strategies for high resolution imaging of epithelial ovarian cancer by laparoscopic nonlinear microscopy[J]. Translational Oncology, 2010, 3(3): 181-194.

[13] Zipfel W R, Williams R M, Webb WW. Nonlinear magic: multiphoton microscopy in the biosciences[J]. Nature biotechnology, 2003, 21(11): 1369-1377.

[14] Ni M, Zhuo S M. Nonlinear optical microscopy: Endogenous signals and exogenous probes[J]. Annalen der Physik, 2015, 527(7/8): 471-489.

[15] König K. Multiphoton microscopy in life sciences[J]. Journal of microscopy, 2000, 200(2): 83-104.

[16] Adur J. Pelegati V B, de Thomaz A A, et al. Quantitative changes in human epithelial cancers and osteogenesis imperfecta disease detected using nonlinear multicontrast microscopy[J]. Journal of Biomedical Optics, 2012, 17(8): 081407.

[17] Zhuo S M, Chen J X, Wu G Z, et al. Quantitatively linking collagen alteration and epithelial tumor progression by second harmonic generation microscopy[J]. Applied Physics Letters, 2010, 96(21): 213704.

[18] Zhuo S M, Zheng L Q, Chen J X, et al. Depth-cumulated epithelial redox ratio and stromal collagen quantity as quantitative intrinsic indicators for differentiating normal, inflammatory, and dysplastic epithelial tissues[J]. Applied Physics Letters, 2010, 97(17): 173701.

[19] Zhuo S M, Yan J, Chen G, et al. Label-free monitoring of colonic cancer progression using multiphoton microscopy[J]. Biomedical Optics Express, 2011, 2(3): 615-619.

[20] Coda S, Thompson A J, Kennedy G T, et al. Fluorescence lifetime spectroscopy of tissue autofluorescence in normal and diseased colon measured ex vivo using a fiber-optic probe[J]. Biomedical Optics Express, 2014, 5(2): 515-538.

[21] Cicchi R, Sturiale A, Nesi G, et al. Multiphoton morpho-functional imaging of healthy colon mucosa, adenomatous polyp and adenocarcinoma[J]. Biomedical Optics Express, 2013, 4(7): 1204-1213.

[22] Zhuo S M, Yan J, Chen G, et al. Label-free imaging of basement membranes differentiates normal, precancerous, and cancerous colonic tissues by second-harmonic generation microscopy[J]. PloS One, 2012, 7(6): e38655.

[23] Li L H, Chen Z F, Wang X F, et al. Detection of morphologic alterations in rectal carcinoma following preoperative radiochemotherapy based on multiphoton microscopy imaging[J]. BMC cancer, 2015, 15(1): 142.

[24] Yan J, Zhuo S M, Chen G, et al. Real-time optical diagnosis for surgical margin in low rectal cancer using multiphoton microscopy[J]. Surgical Endoscopy, 2014, 28(1): 36-41.

[25] Zhuo S M, Chen J X, Xie S S, et al. Extracting diagnostic stromal organization features based on intrinsic two-photon excited fluorescence and second-harmonic generation signals[J]. Journal of Biomedical Optics, 2009, 14(2): 020503.

[26] Chen J X, Zhuo S M, Chen G, et al. Establishing diagnostic features for identifying the mucosa and submucosa of normal and cancerous gastric tissues by multiphoton microscopy[J]. Gastrointestinal Endoscopy, 2011, 73(4): 802-807.

[27] Xu J, Kang D Y, Zeng Y P, et al. Multiphoton microscopy for label-free identification of intramural metastasis in human esophageal squamous cell carcinoma[J]. Biomedical Optics Express, 2017, 8(7): 3360-3368.

[28] Yan J, Zheng Y, Zheng X L, et al. Real-time optical diagnosis of gastric cancer with serosal invasion using multiphoton imaging[J]. Scientific Reports, 2016, 6: 31004.

[29] Matsui T, Mizuno H, Sudo T, et al. Non-labeling multiphoton excitation microscopy as a novel diagnostic tool for discriminating normal tissue and colorectal cancer lesions[J]. Scientific Reports, 2017, 7: 6959.

[30] Xia G W, Zhi W J, Zou Y, et al. Non-linear optical imaging and quantitative analysis of the pathological changes in normal and carcinomatous human colorectal muscularis[J]. Pathology, 2017, 49(6): 627-632.

[31] Shirshin E A, Gurfinkel Y I, Priezzhev A V, et al. Two-photon autofluorescence lifetime imaging of human skin papillary dermis in vivo: assessment of blood capillaries and structural proteins localization[J]. Scientific Reports, 2017, 7: 1171.

[32] Czekalla C, Schönborn K H, Döge N, et al. Body regions have an impact on the collagen/elastin index of the skin measured by non-invasive in vivo vertical two-photon microscopy[J]. Experimental Dermatology, 2017, 26(9): 822-824.

[33] Czekalla C, Schönborn K H, Döge N, et al. Impact of body site, age, and gender on the collagen/elastin index by noninvasive in vivo vertical two-photon microscopy[J]. Skin Pharmacology and Physiology, 2017, 30(5): 260-267.

[34] Vieira-Damiani G, Lage D. Christofoletti Daldon P É, et al. Idiopathic atrophoderma of Pasini and Pierini: A case study of collagen and elastin texture by multiphoton microscopy[J]. Journal of the American Academy of Dermatology, 2017, 77(5): 930-937.

[35] Pena A M, Strupler M, Boulesteix T, et al. Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy[J]. Optics Express, 2005, 13(16): 6268-6274.

[36] Masters B R. So P T C. Confocal microscopy and multi-photon excitation microscopy of human skin invivo[J]. Optics Express, 2001, 8(1): 2-10.

[37] Koenig K, Riemann I. High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution[J]. Journal of Biomedical Optics, 2003, 8(3): 432-439.

[38] Koehler M J, König K, Elsner P, et al. In vivo assessment of human skin aging by multiphoton laser scanning tomography[J]. Optics Letters, 2006, 31(19): 2879-2881.

[39] Breunig H G, Studier H, König K. Multiphoton excitation characteristics of cellular fluorophores of human skin in vivo[J]. Optics Express, 2010, 18(8): 7857-7871.

[40] Koehler M J, Hahn S, Preller A, et al. Morphological skin ageing criteria by multiphoton laser scanning tomography: non-invasive in vivo scoring of the dermal fibre network[J]. Experimental Dermatology, 2008, 17(6): 519-523.

[41] Masters B R. So P T C, Gratton E. Optical biopsy of in vivo human skin: multi-photon excitation microscopy[J]. Lasers in Medical Science, 1998, 13(3): 196-203.

[42] Lin S J, Wu R Jr, Tan H Y, et al. Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy[J]. Optics Letters, 2005, 30(17): 2275-2277.

[43] Tsai T H, Jee S H, Dong C Y, et al. Multiphoton microscopy in dermatological imaging[J]. Journal of Dermatological Science, 2009, 56(1): 1-8.

[44] Lin S J, Jee S H, Kuo C J, et al. Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging[J]. Optics Letters, 2006, 31(18): 2756-2758.

[45] Robertson D M, Rogers N A, Petroll W M, et al. Second harmonic generation imaging of corneal stroma after infection by Pseudomonas aeruginosa[J]. Scientific Reports, 2017, 7: 46116.

[46] Zyablitskaya M, Takaoka A, Munteanu E L, et al. Evaluation of therapeutic tissue crosslinking (TXL) for myopia using second harmonic generation signal microscopy in rabbit sclera[J]. Investigative Ophthalmology & Visual Science, 2017, 58(1): 21-29.

[47] Marando C M, Park C Y, Liao J A, et al. Revisiting the cornea and trabecular meshwork junction with 2-photon excitation fluorescence microscopy[J]. Cornea, 2017, 36(6): 704-711.

[48] Chang Y L, Chen W L, Lo W, et al. Characterization of corneal damage from Pseudomonas aeruginosa infection by the use of multiphoton microscopy[J]. Applied Physics Letters, 2010, 97(18): 183703.

[49] Teng S W, Tan H Y, Sun Y, et al. Multiphoton fluorescence and second-harmonic-generation microscopy for imaging structural alterations in corneal scar tissue in penetrating full-thickness wound[J]. Archives of Ophthalmology, 2007, 125(7): 977-978.

[50] Lombardo M, Merino D, Loza-Alvarez P, et al. Translational label-free nonlinear imaging biomarkers to classify the human corneal microstructure[J]. Biomedical Optics Express, 2015, 6(8): 2803-2818.

[51] McQuaid R, Li J J, Cummings A, et al. . Second-harmonic reflection imaging of normal and accelerated corneal crosslinking using porcine corneas and the role of intraocular pressure[J]. Cornea, 2014, 33(2): 125-130.

[52] Aptel F, Olivier N, Deniset-Besseau A, et al. Multimodal nonlinear imaging of the human cornea[J]. Investigative Ophthalmology & Visual Science, 2010, 51(5): 2459-2465.

[53] Lo W, Teng S W, Tan H Y, et al. Intact corneal stroma visualization of GFP mouse revealed by multiphoton imaging[J]. Microscopy Research and Technique, 2006, 69(12): 973-975.

[54] Nuzzo V, Plamann K, Savoldelli M, et al. In situ monitoring of second-harmonic generation in human corneas to compensate for femtosecond laser pulse attenuation in keratoplasty[J]. Journal of Biomedical Optics, 2007, 12(6): 064032.

[55] Mercatelli R, Ratto F, Rossi F, et al. Three-dimensional mapping of the orientation of collagen corneal lamellae in healthy and keratoconic human corneas using SHG microscopy[J]. Journal of Biophotonics, 2017, 10(1): 75-83.

[56] Wang T J, Lo W, Hsueh C M, et al. Ex vivo multiphoton analysis of rabbit corneal wound healing following conductive keratoplasty[J]. Journal of Biomedical Optics, 2008, 13(3): 034019.

[57] Lo W, Chang Y L, Liu J S, et al. Multimodal, multiphoton microscopy and image correlation analysis for characterizing corneal thermal damage[J]. Journal of Biomedical Optics, 2009, 14(5): 054003.

[58] Hsueh C M, Lo W, Lin S J, et al. Multiphoton microscopy: a new approach, in physiological studies and pathological diagnosis for ophthalmology[J]. Journal of Innovative Optical Health Sciences, 2009, 2(1): 45-60.

[59] Göppert-Mayer M. Uber elementarakte mit zwei quantensprüngen[J]. Annalen der Physik, 1931, 401(3): 273-294.

[60] Hoover E E, Squier J A. Advances in multiphoton microscopy technology[J]. Nature Photonics, 2013, 7(2): 93-101.

[61] BloembergenN. Nonlinearoptics[M]. Singapore: World Scientific, 1996.

[62] Hoy C L, Durr N J, Chen P Y, et al. Miniaturized probe for femtosecond laser microsurgery and two-photon imaging[J]. Optics Express, 2008, 16(13): 9996-10005.

[63] Bao H C, Gu M. A 0.4-mm-diameter probe for nonlinear optical imaging[J]. Optics Express, 2009, 17(12): 10098-10104.

[64] Bao H C, Allen J, Pattie R, et al. Fast handheld two-photon fluorescence microendoscope with a 475 μm×475 μm field of view for in vivo imaging[J]. Optics Letters, 2008, 33(12): 1333-1335.

[65] Le Harzic R, Weinigel M, Riemann I, et al. Nonlinear optical endoscope based on a compact two axes piezo scanner and a miniature objective lens[J]. Optics Express, 2008, 16(25): 20588-20596.

[66] Andresen E R, Bouwmans G, Monneret S, et al. Two-photon lensless endoscope[J]. Optics Express, 2013, 21(18): 20713-20721.

[67] Kondo T, Nakazawa T, Murata S, et al. Stromal elastosis in papillary thyroid carcinomas[J]. Human Pathology, 2005, 36(5): 474-479.

[68] Kalluri R, Zeisberg M. Fibroblasts in cancer[J]. Nature Reviews Cancer, 2006, 6(5): 392-401.

[69] AlbertsB, JohnsonA, LewisJ,et al. Molecular biology of the cell[M]. New York: Garland Science, 2002.

[70] Kerr D. Clinical development of gene therapy for colorectal cancer[J]. Nature Reviews Cancer, 2003, 3(8): 615-622.

[71] RamziS, VinayK, TuckerC, et al. Robbins pathologic basis of disease[M]. Philadelphia: WB Saunders Company, 1999: 349- 352.

[72] Skala M C, Riching K M, Gendron-Fitzpatrick A, et al. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(49): 19494-19499.

[73] Ramanujam N. Fluorescence spectroscopy of neoplastic and non-neoplastic tissues[J]. Neoplasia, 2000, 2(1/2): 89-117.

[74] Pavlova I, Williams M, El-Naggar A, et al. Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue[J]. Clinical Cancer Research, 2008, 14(8): 2396-2404.

[75] Hida J, Matsuda T, Kitaoka M, et al. The role of basement membrane in colorectal cancer invasion and liver metastasis[J]. Cancer, 1994, 74(2): 592-598.

[76] Liotta L A, Tryggvason K, Garbisa S, et al. Metastatic potential correlates with enzymatic degradation of basement membrane collagen[J]. Nature, 1980, 284(5751): 67-68.

[77] Visser R, Arends J W, Leigh I M, et al. Patterns and composition of basement membranes in colon adenomas and adenocarcinomas[J]. Journal of Pathology, 1993, 170(3): 285-290.

[78] Alam M. Fitzpatrick's dermatology in general medicine[J]. Archives of Dermatology, 2004, 140(3): 372.

[79] Cicchi R, Massi D, Sestini S, et al. Multidimensional non-linear laser imaging of Basal Cell Carcinoma[J]. Optics Express, 2007, 15(16): 10135-10148.

[80] Cicchi R, Sestini S, De Giorgi V, et al. Nonlinear laser imaging of skin lesions[J]. Journal of Biophotonics, 2008, 1(1): 62-73.

[81] Forreste JV. The eye: basic sciences in practice[M]. New York: W. B. Saunders, 2002.

[82] Michelacci Y M. Collagens and proteoglycans of the corneal extracellular matrix[J]. Brazilian Journal of Medical and Biological Research, 2003, 36(8): 1037-1046.

[83] Masters B R, Böhnke M. Three-dimensional confocal microscopy of the living human eye[J]. Annual Review of Biomedical Engineering, 2002, 4(1): 69-91.

[84] Yeh A T, Nassif N, Zoumi A, et al. Selective corneal imaging using combined second-harmonic generation and two-photon excited fluorescence[J]. Optics Letters, 2002, 27(23): 2082-2084.

[85] Teng S W, Tan H Y, Peng J L, et al. Multiphoton autofluorescence and second-harmonic generation imaging of the ex vivo porcine eye[J]. Investigative Ophthalmology & Visual Science, 2006, 47(3): 1216-1224.

[86] Han M, Giese G, Bille J F. Second harmonic generation imaging of collagen fibrils in cornea and sclera[J]. Optics Express, 2005, 13(15): 5791-5797.

[87] Tan H Y, Sun Y, Lo W, et al. Multiphoton fluorescence and second harmonic generation microscopy for imaging infectious keratitis[J]. Journal of Biomedical Optics, 2007, 12(2): 024013.

[88] Tan H Y, Sun Y, Lo W, et al. Multiphoton fluorescence and second harmonic generation imaging of the structural alterations in keratoconus ex vivo[J]. Investigative Ophthalmology & Visual Science, 2006, 47(12): 5251-5259.

[89] Morishige N, Wahlert A J, Kenney M C, et al. Second-harmonic imaging microscopy of normal human and keratoconus cornea[J]. Investigative Ophthalmology & Visual Science, 2007, 48(3): 1087-1094.

[90] Brown D J, Morishige N, Neekhra A, et al. Application of second harmonic imaging microscopy to assess structural changes in optic nerve head structure ex vivo[J]. Journal of Biomedical Optics, 2007, 12(2): 024029.

[91] Farid M, Morishige N, Lam L, et al. Detection of corneal fibrosis by imaging second harmonic-generated signals in rabbit corneas treated with mitomycin C after excimer laser surface ablation[J]. Investigative Ophthalmology & Visual Science, 2008, 49(10): 4377-4383.

[92] Llewellyn M E. Barretto R P J, Delp S L, et al. Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans[J]. Nature, 2008, 454(7205): 784-788.

[93] LaComb R, Nadiarnykh O, Campagnola P J. Quantitative second harmonic generation imaging of the diseased state osteogenesis imperfecta: experiment and simulation[J]. Biophysical Journal, 2008, 94(11): 4504-4514.

[94] LaComb R, Nadiarnykh O, Carey S, et al. . Quantitative second harmonic generation imaging and modeling of the optical clearing mechanism in striated muscle and tendon[J]. Journal of Biomedical Optics, 2008, 13(2): 021109.

[95] Tuchin V V. Optical clearing of tissues and blood using immersion method[J]. Journal of Physics D: Applied Physics, 2005, 38(15): 2497-2518.

[96] Cicchi R, Pavone F S, Massi D, et al. Contrast and depth enhancement in two-photon microscopy of human skin ex vivo by use of optical clearing agents[J]. Optics Express, 2005, 13(7): 2337-2344.

[97] Wright A J, Poland S P, Girkin J M, et al. Adaptive optics for enhanced signal in CARS microscopy[J]. Optics Express, 2007, 15(26): 18209-18219.

[98] Rueckel M. Mack-Bucher J A, Denk W. Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(46): 17137-17142.

林宏心, 左宁, 卓双木, 陈建新. 多光子显微技术在医学诊断中的应用[J]. 中国激光, 2018, 45(2): 0207014. Lin Hongxin, Zuo Ning, Zhuo Shuangmu, Chen Jianxin. Application of Multiphoton Microscopy in Disease Diagnosis[J]. Chinese Journal of Lasers, 2018, 45(2): 0207014.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!