光学学报, 2020, 40 (5): 0500001, 网络出版: 2020-03-10   

环境监测领域中光谱学技术进展 下载: 3771次封面文章

Advances with Respect to the Environmental Spectroscopy Monitoring Technology
作者单位
中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
引用该论文

刘文清, 陈臻懿, 刘建国, 谢品华, 张天舒, 赵南京, 司福祺, 胡仁志, 殷高方. 环境监测领域中光谱学技术进展[J]. 光学学报, 2020, 40(5): 0500001.

Wenqing Liu, Zhenyi Chen, Jianguo Liu, Pinhua Xie, Tianshu Zhang, Nanjing Zhao, Fuqi Si, Renzhi Hu, Gaofang Yin. Advances with Respect to the Environmental Spectroscopy Monitoring Technology[J]. Acta Optica Sinica, 2020, 40(5): 0500001.

参考文献

[1] 中国环境监测总站. 实时数据[EB/OL].[2019-10-27]. http:∥www.cnemc.cn/sssj/.

    China National Environmental Monitoring Centre. Real time data[EB/OL].[2019-10-27]. http:∥www.cnemc.cn/sssj/.

[2] Xiao J F, Chevallier F, Gomez C, et al. Remote sensing of the terrestrial carbon cycle: a review of advances over 50 years[J]. Remote Sensing of Environment, 2019, 233: 111383.

[3] de Oliveira A M, Souza C T, et al. Analysis of atmospheric aerosol optical properties in the northeast Brazilian atmosphere with remote sensing data from MODIS and CALIOP/CALIPSO satellites, AERONET photometers and a ground-based lidar[J]. Atmosphere, 2019, 10(10): 594.

[4] Whiteman D N. Examination of the traditional Raman lidar technique I evaluating the temperature-dependent lidar equations[J]. Applied Optics, 2003, 42(15): 2571-2592.

[5] Frankenberg C. O'Dell C, Guanter L, et al. Remote sensing of near-infrared chlorophyll fluorescence from space in scattering atmospheres: implications for its retrieval and interferences with atmospheric CO2 retrievals[J]. Atmospheric Measurement Techniques, 2012, 5(8): 2081-2094.

[6] Seinfeld JH, Pandis SN. Atmospheric chemistry and physics: from air pollution to climate change[M]. USA: John Wiley & Sons, 2016.

[7] Hong Q Q, Liu C, Chan K L, et al. Ship-based MAX-DOAS measurements of tropospheric NO2, SO2, and HCHO distribution along the Yangtze River[J]. Atmospheric Chemistry and Physics, 2018, 18(8): 5931-5951.

[8] Shen X C, Ye S B, Xu L, et al. Study on baseline correction methods for the Fourier transform infrared spectra with different signal-to-noise ratios[J]. Applied Optics, 2018, 57(20): 5794-5799.

[9] Tan W, Zhao S H, Liu C, et al. Estimation of winter time NOx emissions in Hefei, a typical inland city of China, using mobile MAX-DOAS observations[J]. Atmospheric Environment, 2019, 200: 228-242.

[10] Abad G G, Souri A H, Bak J, et al. Five decades observing Earth's atmospheric trace gases using ultraviolet and visible backscatter solar radiation from space[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 238: 106478.

[11] Yang T P, Si F Q, Luo Y H, et al. Source contribution analysis of tropospheric NO2 based on two-dimensional MAX-DOAS measurements[J]. Atmospheric Environment, 2019, 210: 186-197.

[12] Ĉermák P, Karlovets E V, Mondelain D, et al. High sensitivity CRDS of CO2 in the 1.74 μm transparency window. A validation test for the spectroscopic databases[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 207: 95-103.

[13] Shao L G, Fang B, Zheng F, et al. Simultaneous detection of atmospheric CO and CH4 based on TDLAS using a single 2.3 μm DFB laser[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 222: 117118.

[14] Pushkarsky M B, Webber M E, Baghdassarian O, et al. Laser-based photoacoustic ammonia sensors for industrial applications[J]. Applied Physics B: Lasers and Optics, 2002, 75(2/3): 391-396.

[15] 刘志明, 李海平, 张玉广, 等. 应用于FTIR气体监测的HITRAN数据库分子标准吸收截面计算方法研究[J]. 光谱实验室, 2012, 29(1): 39-46.

    Liu Z M, Li H P, Zhang Y G, et al. Algorithm of molecular standard absorption cross-section in HITRAN database for atmospheric monitoring by FTIR spectrometry[J]. Chinese Journal of Spectroscopy Laboratory, 2012, 29(1): 39-46.

[16] Prasad P, Raman M, Ratnam M, et al. Nocturnal, seasonal and intra-annual variability of tropospheric aerosols observed using ground-based and space-borne lidars over a tropical location of India[J]. Atmospheric Environment, 2019, 213: 185-198.

[17] Bohlmann S, Baars H, Radenz M, et al. Ship-borne aerosol profiling with lidar over the Atlantic Ocean: from pure marine conditions to complex dust-smoke mixtures[J]. Atmospheric Chemistry & Physics, 2018, 18(13): 9661-9679.

[18] Popovici I E, Goloub P, Podvin T, et al. Description and applications of a mobile system performing on-road aerosol remote sensing and in situ measurements[J]. Atmospheric Measurement Techniques, 2018, 11(8): 4671-4691.

[19] Mallik C, Tomsche L, Bourtsoukidis E, et al. Oxidation processes in the eastern Mediterranean atmosphere: evidence from the modelling of HOx measurements over Cyprus[J]. Atmospheric Chemistry and Physics, 2018, 18(14): 10825-10847.

[20] Berresheim H, Plass-Dülmer C, Elste T, et al. OH in the coastal boundary layer of Crete during MINOS: measurements and relationship with ozone photolysis[J]. Atmospheric Chemistry and Physics, 2003, 3(3): 639-649.

[21] Winiberg F A F, Smith S C, Bejan I, et al. Pressure-dependent calibration of the OH and HO2 channels of a FAGE HOx instrument using the highly instrumented reactor for atmospheric chemistry (HIRAC)[J]. Atmospheric Measurement Techniques, 2015, 8(2): 523-540.

[22] 李晓倩, 陆克定, 魏永杰, 等. 对流层大气过氧自由基实地测量的技术进展及其在化学机理研究中的应用[J]. 化学进展, 2014, 26(4): 682-694.

    Li X Q, Lu K D, Wei Y J, et al. Technique progress and chemical mechanism research of tropospheric Peroxy radical in field measurement[J]. Progress in Chemistry, 2014, 26(4): 682-694.

[23] Kukui A, Ancellet G, Le Bras G. Chemical ionisation mass spectrometer for measurements of OH and Peroxy radical concentrations in moderately polluted atmospheres[J]. Journal of Atmospheric Chemistry, 2008, 61(2): 133-154.

[24] Fuchs H, Dorn H P, Bachner M, et al. Comparison of OH concentration measurements by DOAS and LIF during SAPHIR chamber experiments at high OH reactivity and low NO concentration[J]. Atmospheric Measurement Techniques, 2012, 5(7): 1611-1626.

[25] Mao J, Ren X, Zhang L, et al. Insights into hydroxyl measurements and atmospheric oxidation in a California forest[J]. Atmospheric Chemistry and Physics, 2012, 12(17): 8009-8020.

[26] Paton-Walsh C, Guérette É A, Kubistin D, et al. The MUMBA campaign: measurements of urban, marine and biogenic air[J]. Earth System Science Data, 2017, 9(1): 349-362.

[27] Chen Z Y, Schofield R, Rayner P, et al. Characterization of aerosols over the Great Barrier Reef: the influence of transported continental sources[J]. Science of the Total Environment, 2019, 690: 426-437.

[28] Ferrero E, Alessandrini S, Anderson B, et al. Lagrangian simulation of smoke plume from fire and validation using ground-based lidar and aircraft measurements[J]. Atmospheric Environment, 2019, 213: 659-674.

[29] Li J, See K F, Chi J. Water resources and water pollution emissions in China's industrial sector: a green-biased technological progress analysis[J]. Journal of Cleaner Production, 2019, 229: 1412-1426.

[30] 王寅, 赵南京, 马明俊, 等. 石墨富集方式下水中Cr元素的LIBS检测[J]. 激光技术, 2013, 37(6): 808-811.

    Wang Y, Zhao N J, Ma M J, et al. Chromium detection in water enriched with graphite based on laser-induced breakdown spectroscopy[J]. Laser Techonology, 2013, 37(6): 808-811.

[31] Sorensen J P R, Vivanco A, Ascott M J, et al. Online fluorescence spectroscopy for the real-time evaluation of the microbial quality of drinking water[J]. Water Research, 2018, 137: 301-309.

[32] 陈卫平, 谢天, 李笑诺, 等. 中国土壤污染防治技术体系建设思考[J]. 土壤学报, 2018, 55(3): 557-568.

    Chen W P, Xie T, Li X N, et al. Thinking of construction of soil pollution prevention and control technology system in China[J]. Acta Pedologica Sinica, 2018, 55(3): 557-568.

[33] 刘凤枝, 李玉浸. 土壤监测分析技术[M]. 北京: 化学工业出版社, 2015: 89- 99.

    Liu FZ, Li YJ. Soil monitoring and analysis technology[M]. Beijing: Chemical Industry Press, 2015: 89- 99.

[34] Cardelli R, Becagli M, Marchini F, et al. Biochar impact on the estimation of the colorimetric-based enzymatic assays of soil[J]. Soil Use and Management, 2019, 35(3): 478-481.

[35] Senesi G S, Senesi N. Laser-induced breakdown spectroscopy (LIBS) to measure quantitatively soil carbon with emphasis on soil organic carbon. A review[J]. Analytica Chimica Acta, 2016, 938: 7-17.

[36] Nguyen H V M, Moon S J, Choi J H. Improving the application of laser-induced breakdown spectroscopy for the determination of total carbon in soils[J]. Environmental Monitoring and Assessment, 2015, 187(2): 28.

[37] 孟德硕, 赵南京, 马明俊, 等. 基于激光诱导击穿光谱技术的土壤快速分类方法研究[J]. 光谱学与光谱分析, 2017, 37(1): 241-246.

    Meng D S, Zhao N J, Ma M J, et al. Rapid soil classification with laser induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 2017, 37(1): 241-246.

刘文清, 陈臻懿, 刘建国, 谢品华, 张天舒, 赵南京, 司福祺, 胡仁志, 殷高方. 环境监测领域中光谱学技术进展[J]. 光学学报, 2020, 40(5): 0500001. Wenqing Liu, Zhenyi Chen, Jianguo Liu, Pinhua Xie, Tianshu Zhang, Nanjing Zhao, Fuqi Si, Renzhi Hu, Gaofang Yin. Advances with Respect to the Environmental Spectroscopy Monitoring Technology[J]. Acta Optica Sinica, 2020, 40(5): 0500001.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!