吴涛 1,2,*胡仁志 1谢品华 1,2,3,4王家伟 1,2刘文清 1,2,3,4
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
3 中国科学院区域大气环境研究卓越创新中心, 福建 厦门 361000
4 中国科学院大学, 北京 100049
甲醛 (HCHO) 是一种重要的大气反应活性指示剂和城市大气气溶胶的前体物, 影响着对流层中的氧化容量。此外, 作为一种有毒气体, 过量的 HCHO 还会对人体健康造成极大的危害, 因而实现 HCHO 的痕量检测有着十分重要的意义。综述了国内外 HCHO 痕量探测的研究进展, 对 HCHO 的探测方法特别是光谱学探测方法, 从探测原理、探测谱线以及光源的应用等多方面进行了详细的介绍。此外, 对比了几种典型的 HCHO 标定装置, 并从探测灵敏度、响应度、选择性、成本以及集成化等多个方面对不同痕量 HCHO 光谱学探测技术进行了分析与总结, 最后对不同探测技术的外场测量应用进行了介绍。
光谱学 HCHO 痕量检测 光谱探测技术 探测谱线 光源 标定装置 spectroscopy HCHO trace detection spectroscopy detection technology absorption line light source calibration device 
量子电子学报
2021, 38(6): 699
王怡慧 1,2胡仁志 2谢品华 2,3,4王凤阳 1,2[ ... ]汪悦 2
作者单位
摘要
1 中国科学技术大学环境科学与光电技术学院,安徽 合肥 230026
2 中国科学院安徽光学精密机械研究所环境光学与技术重点实验室,安徽 合肥 230031
3 中国科学院区域大气环境研究卓越创新中心,福建 厦门 361000
4 中国科学院大学,北京 100049
5 安徽医科大学药学院,安徽 合肥 230032
HOx(OH, HO2)自由基是大气中重要的氧化剂, 准确测量大气HOx自由基的浓度对研究大气光化学反应机理有着重要作用。 气体扩张激光诱导荧光技术(FAGE)已广泛应用于HOx自由基的外场观测, 准确标定是FAGE系统准确测量大气HOx自由基的重要前提。 介绍了一种可以产生准确OH和HO2自由基浓度的便携式湍流标定系统。 该系统是基于低压汞灯产生的185 nm线辐射处于湍流状态的H2O和O2产生一定浓度的HOx自由基。 该系统中产生的自由基浓度分布均匀, 适用于多种平台的系统标定。 为了准确计算出湍流标定装置中产生HOx自由基的浓度, 分别开展了氧气和水汽吸收截面的测量。 利用高精度的腔衰荡光谱(CRDS)系统测量臭氧浓度, 并用冷镜式露点仪对温湿度计测量水汽的浓度进行修正, 提高标定系统HOx自由基浓度计算的准确度。 为了便携化湍流标定系统的外场应用, 快速获取标定系统中产生的HOx自由基的浓度, 测量了用于探测汞灯光强的光电倍增管的灵敏度因子, 实现用汞灯光强代替标定系统中产生的臭氧浓度。 考虑到HOx自由基的活性比较高, 在湍流标定系统传输的过程中会有一定的壁碰撞损失, 通过改变汞灯和标定装置出气口之间的距离对HOx自由基在标定系统中的壁碰撞损失进行定量测量。 将搭建好的湍流标定系统应用于基于气体扩张激光诱导荧光技术HOx自由基探测系统(FAGE-HOx)的准确标定测试, 根据OH自由基在标定系统中的壁碰撞损失对FAGE系统中探测的OH自由基荧光数进行修正, 实验结果表明修正后的OH自由基荧光数和OH自由基浓度之间有着良好的相关性, 这说明HOx自由基湍流标定系统具有很好的准确性, 并且体积小方便携带, 适用于外场复杂环境条件下的系统标定。
湍流标定系统 HOx自由基 气体扩张激光诱导荧光技术 Turbulent calibration system HOxradical FAGE 
光谱学与光谱分析
2021, 41(8): 2384
作者单位
摘要
1 安徽理工大学人工智能学院, 安徽 淮南 232001
2 中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
3 安徽科技学院, 安徽 凤阳 233100
非相干宽带腔增强吸收光谱技术(IBBCEAS)利用高精密谐振腔增强吸收光程, 实现对痕量气体的高灵敏探测。 目前, IBBCEAS技术主要采用发光二极管(LED)作为非相干光源。 当谐振腔镜片反射率曲线与带宽有限的LED辐射谱不能很好匹配时, 光谱反演波段选择不当可能会对被测气体浓度拟合结果产生较大偏差。 以定量探测大气NO2浓度为例, 分析了IBBCEAS光谱反演波段对NO2拟合结果的影响, 发现当反演波段宽度窄到一定程度后, NO2浓度拟合相对误差会迅速增加。 为此, 提出了一种基于RBF神经网络结合遗传算法的机器学习IBBCEAS光谱反演波段优化方法, 以使浓度拟合误差达到最小。 在430~480 nm待选波段内, 选择各种宽度和中心波长的子波段作为反演波段, 分别进行NO2浓度拟合, 以此获得435个样本数据, 并将样本数据按照4∶1比例分成学习样本和测试样本, 分别用于RBF神经网络学习训练和测试, 得到输入参数“反演波段的起始波长与截止波长”与输出参数“浓度拟合相对误差”之间的非线性映射关系。 使用遗传算法搜索最优反演波段, 将反演波段的起始波长和截止波长组合进行个体编码, 随机产生若干个体形成种群。 以RBF神经网络的输出(即浓度拟合相对误差)作为个体适应度, 经过多代种群进化过程后, 获得适应度最优个体, 即获得最优反演波段。 在种群规模为100个体, 种群进化最大代数为100的情况下, 当种群进化第61代时, 最优个体出现, 对应的最优适应度为3.584%, 最优反演波段为445.78~479.44 nm。 选择相同带宽的其他4个典型反演波段, 与最优反演波段下的NO2拟合结果进行了对比。 结果显示, 在最优反演波段下, 无论是拟合误差、 相对拟合误差还是拟合残差标准偏差, 均低于其他4个反演波段, 光谱拟合质量达到最优。 结果表明, 利用机器学习来确定IBBCEAS最优反演波段是可行的。
非相干宽带腔增强吸收光谱 优化 反演波段 机器学习 遗传算法 Incoherent broadband cavity enhanced absorption sp Optimization Retrieval range Machine learning Genetic algorithm 
光谱学与光谱分析
2021, 41(6): 1869
作者单位
摘要
氨(NH3)是大气中活性氮最主要的还原形式, 是形成二次无机铵盐的重要气态前体物。 在中国极度污染的条件下, 这些铵盐可占PM2.5质量的40%~60%。 NH3污染不仅影响全球的光辐射强度, 而且会加剧大气光化学污染。 目前, 城市地区氨气来源仍存在一定争议。 为研究泰州地区NH3污染情况, 并深入了解NH3的来源。 2018年6月6日至15日, 基于离轴积分腔输出光谱技术, 开展了夏季泰州地区大气NH3浓度的连续观测。 其他污染物浓度(如NH3, NOx, CO, NH4+)同步进行测量。 观测点位距离交通枢纽300 m, 观测期间NH3的平均浓度为25.1±4.5 μg·m-3, 相比国内外其他城市, 该地区NH3污染处于较高水平。 白天与夜间NH3浓度均值无明显差异, 但总体呈现白天降低夜晚升高的趋势。 夜间温差大, 大气边界层较为稳定, 是污染物得以累积的原因之一; 晨间NH3浓度急剧升高, 主要考虑为夜间沉积在水汽中的NHx(气态NH3与颗粒态NH4+)的蒸发所带来。 随着光照进一步增强, 环境水汽中NHx的蒸发逐渐结束, 光化学反应过程逐渐占据主导, NH3浓度上涨速度缓慢, 逐渐趋于平衡, 并在之后出现迅速下降。 在湿度较大的夜间, NHx的沉积过程更加明显。 结合观测期间的气象参数以及与常规污染物的相关性, 讨论了泰州地区的污染物变化趋势及污染水平。 结果表明, 大部分日期交通排放对泰州地区NH3浓度影响较小, 仅6月7日早高峰期NH3与NOx, CO相关性较好, R2分别为0.740与0.911, 推测当日交通排放影响较大, 交通源是NH3的重要局地源。 进一步进行了后向轨迹分析, 比较了观测期间不同气团所导致的污染物浓度变化。 结合观测结果分析可知, 观测点西北方向工业园区污染排放可能是导致6月10日夜间污染事件的重要原因。
氨气 排放源 后向轨迹 蒸发效应 NH3 Emission source Backward trajectory Evaporation effect 
光谱学与光谱分析
2021, 41(2): 360
吴盛阳 1,2胡仁志 1,2,*谢品华 1,2李治艳 1,2[ ... ]靳华伟 1,2
作者单位
摘要
1 中国科学院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学科学岛分院, 安徽 合肥 230026
3 安徽医科大学药学院, 安徽 合肥 230032
4 安徽大学物质科学与信息技术研究院, 安徽 合肥 230601
5 中国科学院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室, 安徽 合肥 23003
6 中国科学技术大学环境科学与光电技术学院, 安徽 合肥 230026
氮氧化物是大气中一种重要的痕量气体, 影响大气的氧化性, 危害人和动物的生理健康、 导致光化学烟雾、 灰霾、 酸沉降等环境问题。 近年来随着我国经济的迅速发展, 能源消耗量的不断增加, 氮氧化物的排放量居高不下, 因此研究氮氧化物在大气中的含量及其化学性质具有非常重要的意义。 氮氧化物(NOx)的探测方式非常多样, 但总活性氮氧化物(NOy)的测量方式一直以来以催化转化化学发光法(CL)为主, 本文介绍了一种热解双通道腔衰荡光谱技术(TD-CRDS)同步测量大气中NO2和NOy浓度的方法。 优化了热解装置的性妮, 确定了NO2的有效吸收截面, 分析了系统可能存在的干扰(H2O、 乙二醛、 NH3、 N2O等), 探讨了系统的探测限(NO2腔: 8.72×108 molecules·cm-3; NOy腔: 9.71×108 molecules·cm-3)及误差(NO2的测量误差: 5%, NOy的测量误差: 12%)。 另外, 为了验证系统的性能, 将CRDS与长光程差分吸收光谱(LP-DOAS)同步测量了环境气体NO2浓度, 相关性系数r为0.960; 与Model 42i-NOy分析仪开展环境大气NOy的对比测量, 相关性系数r为0.968, 均具有较好的一致性。 在合肥科学岛综合楼顶楼开展了为期一周的外场观测, 测量期间NO2和NOy的平均浓度分别为0.411×1012和0.773×1012 molecules·cm-3 , 通过平均日变化图发现NO2与NOy浓度具有相似的变化趋势, 一般于10:00开始下降, 15:00达到最低值。 CRDS技术因其高灵敏度、 高时间分辨率已成为一种新型简便地测量环境大气中总活性氮氧化物的方法。
腔衰荡光谱 热解 催化转化化学发光法 Cavity ring down spectrometer Thermal dissociation NO2 NO2 NOy NOy Catalytic conversion chemiluminescence 
光谱学与光谱分析
2020, 40(6): 1661
林川 1,2,*胡仁志 2,**谢品华 2,3,4,5,***吴盛阳 2[ ... ]王怡慧 2,4
作者单位
摘要
1 安徽大学物质科学与信息技术研究院, 安徽 合肥 230601
2 中国科学院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
3 中国科学院区域大气环境研究卓越创新中心, 福建 厦门 361000
4 中国科学技术大学环境科学与光电技术学院, 安徽 合肥 230026
5 中国科学院大学, 北京 100049
6 安徽工业大学数理科学与工程学院, 安徽 马鞍山 243002
基于腔衰荡技术搭建了一套热解双腔式腔衰荡光谱(TD-CRDS)探测系统用于环境大气二氧化氮(NO2)和有机硝酸酯(Organic Nitrate, ON)的快速同步测量。二氧化氮是通过其对406 nm处激光的吸收来直接进行测量的,而有机硝酸酯是通过将其在450 ℃高温下热解为NO2进行间接测量的,在该温度下,ON的转化效率可达到99%。使用中心波长为406.02 nm的激光器,经NO2高分辨吸收截面与激光光谱卷积获得NO2的有效吸收截面为5.74×10 -19 cm 2·molecule -1;对加热装置进行稳定性测试,确定最佳流速为1 L/min;NO2腔与ON腔同步测量环境大气中的NO2具有非常好的一致性,相关性系数R2为0.99。经优化,本探测系统的探测限可达2.42×10 9 molecule·cm -3 (标准差为3σ,时间分辨率为1 s)。将TD-CRDS系统与长光程差分吸收光谱(LP-DOAS)测量的NO2进行对比,两者一致性较好,R2为0.93,说明系统测量具有较好的准确性。将该系统应用于外场实验中,获得了NO2和ON的浓度序列。
大气光学 二氧化氮 有机硝酸酯 腔衰荡光谱技术 热解 
光学学报
2020, 40(12): 1201003
作者单位
摘要
中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
环境的变化不但影响着现在和未来的世界,而且一直是国际科学前沿关注的热点。环境问题的解决离不开先进的监测技术和手段。环境光谱学监测技术利用光学中的吸收、发射、散射以及大气辐射传输等方法,通过建立特征因子指纹光谱数据库和定量解析算法,获取污染物的特性,可用于空气质量、固定和流动污染源的自动监测,具有实时快速、高灵敏、监测范围广等优势,是当今国际环境监测的发展方向和主导技术。目前形成了以激光雷达技术、差分光学吸收光谱学技术、可调谐二极管激光光谱学技术、傅里叶变换红外光谱学技术等为主体的一系列环境监测技术及体系。基于这些技术和体系对监测信息的获取、传输和共享,为全社会提供了基础环境信息,同时也推动了基于监测数据的环境质量评价体系的发展,为我国的环境管理提供了科学依据。
光谱学 环境光学 实时立体监测 
光学学报
2020, 40(5): 0500001
靳华伟 1,2,3,*谢品华 1,2胡仁志 1,2刘文清 1,2[ ... ]黄崇崇 1,2
作者单位
摘要
1 中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
3 安徽理工大学机械工程学院, 安徽 淮南 232001
针对呼吸性粉尘浓度连续、 可靠、 低成本的实时检测需求, 实现了光谱应用技术创新, 提出了一种基于光声光谱的呼吸性粉尘探测系统, 低功率二极管激光器光谱中心波长为403.56 nm及相应的NO2有效吸收截面为5.948 5×10-19 cm2·mole-1; 通过频率扫描拟合得到了1.35 kHz的谐振频率。 开展了光声池结构的影响分析, 得到了光声池长度参数对本底噪声影响较小但对激光信号影响较大、 内径参数对本底噪声存在一定影响但对本底噪声影响较小的结论。 在考虑品质因数、 加工条件、 使用场合和待测对象属性等影响情况下, 选用120 mm的长度参数和8 mm的内径参数; 基于长度为60 mm、 内径为25 mm的缓冲腔结构, 开展了缓冲隔板对系统稳定性的影响分析, 通过在缓冲腔中设置缓冲隔板, 降低了本底噪声、 稳定了系统, 其幅值及波动由(2.83±0.11) μv稳定为(1.26±0.03) μv。 分析得到了NO2的比吸收系数为195.28 Mm-1·(mg·m-3)-1, 利用NO2气体在405 nm处的吸收对系统进行了标定, 得到了拟合斜率为0.0436 8 μv/Mm-1、 相关系数为0.998、 池常数为300.24 Pa·cm·W-1的结论。 同时在1 min平均时间下, 得到了系统探测浓度下限及吸收系数为2.30 μg·m-3和0.448 Mm-1。 基于标准微球的聚苯乙烯作为气溶胶发生器对象开展了呼吸性粉尘的吸收系数影响分析, 进行了5μm以下不同数浓度颗粒及同一数浓度下不同粒径颗粒吸收系数的测试, 结果表明: 呼吸性粉尘的吸收系数和数浓度成正比, 线性拟合后的斜率为10.598±0.641 96, 相关系数为0.993; 吸收系数曲线的方差在3~4 Mm-1间, 不同粒径的颗粒对吸收系数存在着一定的影响; 随着粒径增加, 吸收系数随之增加。 开展了环境大气中NO2的测量, 选用0.2 μm的过滤膜滤除粉尘的干扰, 实验结果表明大气NO2浓度为16.4~61.6 μg·m-3, 平均浓度为41.1 μg·m-3。 为了证实测量系统的准确性, 与课题组自行研发的长光程差分吸收光谱系统(LP-DOAS)进行了对比测试, 测试结果显示了本光声光谱系统和LP-DOAS系统测量NO2浓度的相关性较好, 线性拟合后的斜率为1.011 78±0.040 13, 相关系数为0.947 81。 开展了环境大气中呼吸性粉尘的测量, 选用5 μm过滤片过滤环境大气, 通过“NO2+5 μm粉尘”和“NO2+0.2 μm粉尘”两路测量对象的差分测量, 得到了呼吸性粉尘的变化趋势, 可以满足自然悬浮状态下的呼吸性粉尘吸收系数实时测量。
光声光谱 呼吸性粉尘 吸收系数 长光程差分吸收光谱 Photo-acoustic spectroscopy Respirable dust Absorption coefficient Long path differential optical absorption spectros 
光谱学与光谱分析
2019, 39(7): 1993
作者单位
摘要
1 安徽理工大学电气与信息工程学院, 安徽 淮南 232001
2 中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
3 安徽三联学院电子电气工程学院, 安徽 合肥 230601
非相干宽带腔增强吸收光谱法定量探测大气痕量气体浓度需要准确定标。 以定量探测大气NO2为目的, 建立了基于蓝色发光二极管光源的非相干宽带腔增强吸收光谱测量系统, 研究了(1)仅使用浓度已知的NO2吸收光谱、 (2)同时使用浓度已知的NO2和纯氧气中氧气二聚体O2—O2吸收光谱、 (3)利用纯氮气和纯氦气的瑞利散射消光差异等三种方法, 分别获取非相干宽带腔增强吸收光谱在430~490 nm波段的镜片反射率定标曲线。 三种方法得到的镜片反射率最大值对应波长均约为460 nm, 但这些最大值存在一定差异, 分别为0.999 25, 0.999 33和0.999 37。 利用NO2样气吸收测量对比了三种定标方法, 发现方法(1)与另外两种方法的测量结果不一致性分别约为14%和19%, 而后两种方法所测结果的不一致性仅为4%。 测量结果表明, NO2标准气体浓度的不准确性以及壁损耗等因素恶化了方法(1)的定标精度, 应尽量避免使用该定标方法。 通过对实际大气中NO2和O2—O2在440~485 nm波段内的同时测量, 进一步验证了非相干宽带腔增强吸收光谱法的高灵敏度以及所用标定方法的有效性。
非相干宽带腔增强吸收光谱 大气NO2 定标方法 发光二极管 Incoherent broadband cavity enhanced absorption sp Atmospheric NO2 Calibration method Light emitting diode 
光谱学与光谱分析
2018, 38(3): 670
作者单位
摘要
1 中国科学院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
2 安徽工业大学数理科学与工程学院, 安徽 马鞍山 243032
3 安徽医科大学药学院, 安徽 合肥 230032
采用高温热解五氧化二氮(N2O5)的方法,利用N2O5与NO3自由基之间的热平衡关系,通过腔衰荡光谱技术测量N2O5及NO3自由基的浓度。基于二氧化氮(NO2)与N2O5之间平衡可逆,探讨加热温度及NO2浓度变化对N2O5分解率的影响;考虑N2O5在测量系统中的损耗,经初步的量化分析得到进气效率为88%。通过Allan方差选取最佳积分时间,在外场测量条件下,优化系统的体积分数探测限为8.6×10 -12;通过分析进气效率、吸收截面及N2O5不完全热解等不确定性因素,估算得到整体测量误差约为±10%。在合肥郊区进行夜间大气实际监测,测量期间N2O5的浓度变化范围在(0.035~1)×10 -9之间,平均浓度为4.52×10 -10。该技术为实现大气中N2O5及NO3自由基的高灵敏度在线监测提供了有效途径。
大气光学 腔衰荡光谱技术 五氧化二氮 二极管激光 热解 
光学学报
2017, 37(9): 0901001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!