袁峰 1,2高晶 3姚路 1陈兵 1[ ... ]阚瑞峰 4
作者单位
摘要
1 中国科学院 安徽光学精密机械研究所 环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
3 中国科学院 青藏高原研究所, 北京 100101
4 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
为了分析青藏高原地区甲烷浓度的垂直分布, 本文采用腔衰荡光谱技术(CRDS)设计了一套高灵敏度的球载甲烷浓度实时测量系统, 该测量系统在基于DSP的单板电路上实现腔模锁定、衰荡信号采集、光谱扫描、数据存储等功能并在DSP上实时处理衰荡信号、光谱信号和浓度等数据。本文首先介绍了CRDS测量原理与采用的光谱处理算法, 通过固定高斯线宽的方式改进光谱拟合算法, 使得浓度计算结果得到明显提升。然后, 分析了电路系统采集的衰荡信号与光谱信号, 采集的衰荡信号信噪比达62 dB, 并在实验室使用标准气体进行了标定试验, 标准气体的测量值标准差σ最大为2.2×10-9, 测量值的均方值RMS和标准气体标称值之间的校正可决系数为0.998 7。最后, 系统进行了实际试验, 在西藏鲁朗地区成功实现了从海拔3 340 m到海拔6 000 m的上升和下降过程中甲烷浓度的测量。该系统可以通过改变激光波长与光腔反射镜测量其他大气痕量气体, 进一步改进与优化的系统可以应用到大气同位素丰度的测量中。
光谱学 腔衰荡光谱技术 痕量气体 实时测量 spectroscopy cavity ringdown spectroscopy isotopes aburdance highly sensitivity real time detection 
光学 精密工程
2020, 28(9): 1881
林川 1,2,*胡仁志 2,**谢品华 2,3,4,5,***吴盛阳 2[ ... ]王怡慧 2,4
作者单位
摘要
1 安徽大学物质科学与信息技术研究院, 安徽 合肥 230601
2 中国科学院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
3 中国科学院区域大气环境研究卓越创新中心, 福建 厦门 361000
4 中国科学技术大学环境科学与光电技术学院, 安徽 合肥 230026
5 中国科学院大学, 北京 100049
6 安徽工业大学数理科学与工程学院, 安徽 马鞍山 243002
基于腔衰荡技术搭建了一套热解双腔式腔衰荡光谱(TD-CRDS)探测系统用于环境大气二氧化氮(NO2)和有机硝酸酯(Organic Nitrate, ON)的快速同步测量。二氧化氮是通过其对406 nm处激光的吸收来直接进行测量的,而有机硝酸酯是通过将其在450 ℃高温下热解为NO2进行间接测量的,在该温度下,ON的转化效率可达到99%。使用中心波长为406.02 nm的激光器,经NO2高分辨吸收截面与激光光谱卷积获得NO2的有效吸收截面为5.74×10 -19 cm 2·molecule -1;对加热装置进行稳定性测试,确定最佳流速为1 L/min;NO2腔与ON腔同步测量环境大气中的NO2具有非常好的一致性,相关性系数R2为0.99。经优化,本探测系统的探测限可达2.42×10 9 molecule·cm -3 (标准差为3σ,时间分辨率为1 s)。将TD-CRDS系统与长光程差分吸收光谱(LP-DOAS)测量的NO2进行对比,两者一致性较好,R2为0.93,说明系统测量具有较好的准确性。将该系统应用于外场实验中,获得了NO2和ON的浓度序列。
大气光学 二氧化氮 有机硝酸酯 腔衰荡光谱技术 热解 
光学学报
2020, 40(12): 1201003
作者单位
摘要
中国计量科学研究院环境计量中心, 北京 100029
为了有效减小光腔衰荡光谱仪中光腔的体积,设计了一种Z型折叠腔结构,其外部尺寸仅为26.4 cm×8.5 cm×4.5 cm,展开的光腔长度为73.8 cm。采用傍轴高斯光束传输方程对实验光路进行仿真,通过调节两个凸透镜的焦距和位置,实现了光腔内激光模式与光腔模式的完美匹配,确保激光在腔内以横基模TEM00模式存在。实验中,采用数字延迟脉冲发生器触发声光调制器,开断激光,并高速采集衰荡信号,验证了所设计的折叠腔在光腔衰荡光谱仪上应用的可行性。对实验数据进行指数拟合,所得最大残差不超过0.004 μW,衰荡时间为0.852 μs,与理论计算结果相符。所设计的Z型折叠腔结构紧凑,可用于商业化小型光腔衰荡光谱仪。
光谱学 腔衰荡光谱技术 Z型折叠腔 模式匹配 数据采集 
中国激光
2020, 47(3): 0311001
王金舵 1,2,*余锦 1,2貊泽强 1,2何建国 1[ ... ]于鸿瑞 3
作者单位
摘要
1 中国科学院光电研究院, 北京 100094
2 中国科学院大学, 北京 100049
3 长春理工大学理学院, 吉林 长春 130022
腔衰荡光谱技术(CRDS)作为一种具有高灵敏度高光谱分辨率的检测方法已被广泛用于痕量气体检测。 而目前基于CRDS痕量气体检测多针对单一气体进行测量或通过多个激光器产生的多光束进行多种组分气体浓度测量。 利用DFB激光器波长可调谐特性, 通过强弱吸收峰结合, 使用单光束实现了多种温室气体的腔衰荡光谱技术同步检测。 由于大气中水汽和二氧化碳浓度较高, 为实现同一衰荡系统对三种温室气体的同步测量, 在平衡吸收损耗的基础上, 选取1 653~1 654 nm内甲烷的强吸收峰与水汽、 二氧化碳的弱吸收峰进行测量。 通过光谱叠加反演矩阵, 分别得到甲烷、 水汽、 二氧化碳的浓度。 在计算测量灵敏度过程中发现, 通过去除衰荡过程初期的部分数据点(过滤区间), 会对噪声等效吸收系数产生影响。 多数情况下, 在测量灵敏度计算方面, 列文伯格-马夸尔特算法(L-M)会优于离散傅里叶变换法(DFT); 但当衰荡曲线的单指数性下降时, 上述结论不一定成立。 搭建了一个低精细度(F≈6×103)衰荡腔对上述结论进行了实验验证。 相较于用于测量温室气体浓度的高精细度衰荡腔(F≈1×105), 低精细度衰荡腔的衰荡速率较快, 衰荡曲线的单指数性明显低于高精细度衰荡腔。 实验表明, 在过滤区间长度较短时, 采用DFT算法计算得到的噪声等效吸收系数会小于L-M算法得到的结果。 当过滤区间长度增加时, L-M算法得到的结果优于DFT算法。 在受过滤区间长度影响方面, DFT算法的波动性要明显小于L-M算法。 根据Allan方差分析, 在512次采样平均(约8 s)下的最小噪声等效吸收系数进行计算, 该CRDS装置测量灵敏度为2.4×10-10 cm-1。 在25 ℃标准大气压下, 对应甲烷、 水汽、 二氧化碳的测量灵敏度分别为0.64 ppbv, 3.5 ppmv和4.0 ppmv。 基于该CRDS装置, 通过单光束多波长测量方法, 利用光谱叠加反演矩阵, 测得大气中甲烷、 水汽、 二氧化碳浓度分别为2.018, 3 654和526 ppmv; 而采用经典CRDS单波长测量得到的甲烷、 水汽、 二氧化碳浓度分别为2.037, 3 898和630 ppmv。 通过与温控调节波长, 逐点扫描得到的光谱吸收曲线进行对比, 采用多波长测量得到气体浓度进行复合拟合的光谱曲线残差小于单波长测量得到气体浓度进行简单拟合的光谱曲线残差。
腔衰荡光谱技术 温室气体 痕气检测 拟合算法 Cavity ring down spectroscopy Greenhouse gas Trace gas detection Fitting algorithm 
光谱学与光谱分析
2019, 39(7): 2046
作者单位
摘要
上海理工大学能源与动力工程学院上海市动力工程多相流动与传热重点实验室, 上海 200093
基于激光诱导炽光(LII)法和光腔衰荡光谱(CRDS)技术,搭建了用于研究火焰碳烟颗粒的测量平台,并对其性能参数进行了表征。碳烟颗粒路径积分衰减系数测量结果表明,双色LII测试系统和CRDS系统相互独立。同时运行双色LII和CRDS系统,测量得到的路径积分衰减系数随着火焰高度的增加先增大后减小,两个系统的测量结果具有较好的相关性。通过优化拟合模型及去除系统噪音,获得了较好的光腔衰荡信号拟合结果。
测量 激光诱导炽光法 腔衰荡光谱技术 碳烟颗粒 扩散火焰 燃烧 
中国激光
2019, 46(3): 0304002
作者单位
摘要
1 浙江师范大学数理与信息工程学院, 浙江 金华 321004
2 浙江金华广福医院, 浙江 金华 321004
时间相关吸收光谱技术, 如腔衰荡光谱技术(CRDS)和腔衰减相移光谱技术(CAPS), 是近三十几年发展起来的一类新型吸收光谱检测技术, 它具有探测灵敏度高、 响应速度快、 不受光源强度起伏变化影响等优点。 传统的吸收光谱技术都是基于Lambert-Beer定律, 如直接吸收光谱技术(DAS)、 波长调制光谱技术(WMS)和腔增强吸收光谱技术(CEAS)等, 这类光谱技术在探测物质微弱吸收的时候一旦遇到较强的背景光信号就变得难以测量, 而且光源的不稳定性也会对检测带来一定的限制。 时间相关吸收光谱技术由于其不受光源强度起伏变化的特点, 在很大程度上能够弥补传统吸收光谱技术所存在的缺陷, 但其也有自身的局限性。 首先在理论上, CRDS和CAPS这两种时间相关吸收光谱技术并不统一, 而且在现有光谱理论下, Pulse-CRDS在应用时使用的脉冲光源的脉宽必须远小于谐振腔本身的时间常数, 对于长脉宽的脉冲光或者反射率低(小于99.9%)的腔体, 现有理论将不再适用; CAPS在应用时光源调制信号必须是周期性的正弦信号或者方波信号, 对于其他类型的周期调制信号或者非周期性信号, 现有理论并没有涉及。 针对上述提到的时间相关吸收光谱技术的局限性, 提出了一种新的分析时间相关吸收光谱技术的方法, 即利用一阶传递函数, 将谐振腔视为一阶传感系统, 对时间相关吸收光谱技术理论进行统一解释, 在公式推导上证明新方法下的推导结果和现有理论结果的一致性。 针对Pulse-CRDS, 以高斯脉冲光为例, 给出一阶传感理论下的透射光强表达式, 并对一系列不同的脉冲宽度γ、 谐振腔时间常数τreal以及从输出信号中拟合而得的时间常数τanal进行了模拟仿真。 经过分析比较后发现, 当γ<0.3τreal时, τanal和τreal的偏差小于1%; 当γ>0.3τreal时, τanal和τreal的偏差渐渐变大, 将不再满足实验条件。 为了使Pulse-CRDS在长脉宽脉冲光下也能应用, 本文给出了修正函数, 使得在脉宽大于腔衰荡时间0.3倍的情况下, 经过修正补偿后, 衰荡时间的误差小于1%。 对于CAPS系统, 搭建相应实验平台, LED中心波长选用405 nm, 使用方波调制信号, 测量不同频率下的入射参考信号与探测信号的相位差和探测信号峰-峰值, 通过由一阶传递函数推导而得的相频特性和幅频特性, 拟合得到时间常数τ, 结果分别为7.24和7.25 μs, 残差范围分别为[-0.01, 0.02]和[-0.02, 0.025], 两者结果基本一致。 实验结果验证了一阶传感系统理论完全适用于时间相关光谱的信号分析, 并且一阶传感系统理论还使得时间相关光谱技术的理论得到了统一。
时间相关吸收光谱技术 腔衰荡光谱技术 相移光谱技术 一阶传递函数 时间常数 Time-dependent absorption spectroscopy Cavity ring-down spectroscopy Phase-shift spectroscopy First-order transfer function Time constant 
光谱学与光谱分析
2019, 39(3): 673
寇潇文 1,2,*周宾 1,2,*刘训臣 1,2陈海轩 1,2[ ... ]刘鹏飞 1
作者单位
摘要
1 东南大学能源与环境学院, 江苏 南京 210096
2 上海交通大学动力机械与工程教育部重点实验室, 上海 200240
NH3是大气二次细颗粒物的主要前驱物之一,NH3浓度的准确测量对于大气环境监测和保护具有重要意义。近红外波段激光器的成本较低,但采用其测量NH3时,普遍存在受环境中H2O、CO2气体干扰以及吸收光程较短等问题。为克服环境中H2O、CO2干扰气体的影响,筛选出中心波数为6521.97 cm -1的吸收谱线,利用该谱线对大气环境中痕量NH3的浓度进行测量。该谱线不受环境中CO2吸收的影响,且在低压条件下与H2O吸收谱线的重叠范围较小,通过多峰拟合可以准确提取出NH3的光谱吸收率。基于分布反馈式激光器搭建了一套腔衰荡吸收光谱测量装置,在该装置中,衰荡光腔由一对反射率高达99.996%的高反镜构成,空腔衰荡时间约96 μs,有效吸收光程可达1.6×10 4 m。利用该装置对大气环境中痕量NH3的浓度进行测量,结果表明:该测量系统的探测灵敏度可以达到3.9×10 -10
光谱学 大气监测 腔衰荡光谱技术 氨气 
光学学报
2018, 38(11): 1130001
作者单位
摘要
1 中国科学院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
2 安徽工业大学数理科学与工程学院, 安徽 马鞍山 243032
3 安徽医科大学药学院, 安徽 合肥 230032
采用高温热解五氧化二氮(N2O5)的方法,利用N2O5与NO3自由基之间的热平衡关系,通过腔衰荡光谱技术测量N2O5及NO3自由基的浓度。基于二氧化氮(NO2)与N2O5之间平衡可逆,探讨加热温度及NO2浓度变化对N2O5分解率的影响;考虑N2O5在测量系统中的损耗,经初步的量化分析得到进气效率为88%。通过Allan方差选取最佳积分时间,在外场测量条件下,优化系统的体积分数探测限为8.6×10 -12;通过分析进气效率、吸收截面及N2O5不完全热解等不确定性因素,估算得到整体测量误差约为±10%。在合肥郊区进行夜间大气实际监测,测量期间N2O5的浓度变化范围在(0.035~1)×10 -9之间,平均浓度为4.52×10 -10。该技术为实现大气中N2O5及NO3自由基的高灵敏度在线监测提供了有效途径。
大气光学 腔衰荡光谱技术 五氧化二氮 二极管激光 热解 
光学学报
2017, 37(9): 0901001
作者单位
摘要
中国空气动力研究与发展中心 设备设计与测试技术研究所, 四川 绵阳 621000
光腔衰荡光谱技术(Cavity Ring Down Spectroscopy, CRDS)是一种高灵敏度的吸收光谱测量技术, 在燃烧场激光光谱诊断领域里是一种十分重要的燃烧产物定量测量手段。文中研究了光腔衰荡光谱技术用于燃烧产物定量测量的原理, 搭建了脉冲型光腔衰荡光谱技术实验系统, 选取OHA2Σ+-X2Π(0, 0)电子跃迁带的P1(2)吸收线谱, 在常压条件下对平面火焰的OH浓度进行了定量测量, 并对激光器线宽及线型、激光器的频率稳定性、火焰温度、光腔参数等因素对测量误差的影响进行了分析讨论。误差分析给出了光腔衰荡光谱技术的几个关键注意事项, 可为光腔衰荡光谱技术的应用提供指南。
腔衰荡光谱技术 误差分析 浓度测量 平面火焰 CRDS uncertainty analysis OH OH concentration measurement plat flame 
红外与激光工程
2017, 46(2): 0239002
作者单位
摘要
1 中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学环境科学与光电技术学院, 安徽 合肥 230026
夜间大气NO3自由基的氧化能力相当于白天OH自由基, 鉴于NO3自由基在大气反应过程中的关键作用, 准确测量其浓度及研究其夜间大气化学过程具有重大意义。 采用以二极管激光器为光源(中心波长为662 nm, 半高宽0.3 nm), 两块高反射率镜片(R≥99.998 5%)形成的腔体为光学共振腔, 有效光程达到约20 km的腔衰荡光谱系统(CRDS)对夜间大气NO3自由基进行测量, 并且针对秋冬季交通繁忙区域夜间大气边界层NO3自由基化学过程进行研究。 采用该系统于2014年10月29日—11月15日在北京市中国科学院大学校园开展了NO3自由基连续外场观测实验, 观测期间NO3自由基浓度相对较低, 最大浓度约为50 pptv, 平均值为10 pptv。 并结合NO2, NO和O3等相关辅助数据对测量结果进行分析, 分析表明在观测期间NO3自由基产率为 0.04~1.03 pptv·s-1, 平均寿命约为68 s。 并且近一步分析了观测期间大气NO3自由基损耗途径, 探讨了不同湿度及颗粒物浓度对其损耗的影响。 即观测期间当大气中RH≥60%, PM2.5浓度大部分大于60 μg·m-3时, ln(τss(NO3))与ln(NO2)的相关性达到0.79, 大气中NO3自由基损耗主要以间接为主; 然而在RH≤40%, PM2.5浓度大部分小于60 μg·m-3时, 因测量点靠近国道受局地污染源影响, 直接损耗较显著; 当大气中40%NO3自由基 腔衰荡光谱技术 夜间大气化学 损耗途径 NO3 radical Cavity ring down spectroscopy Nocturnal atmospheric chemistry Loss process 
光谱学与光谱分析
2016, 36(10): 3097

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!