Jin Sui 1,2,3Jiaxiang Chen 1,2,3Haolan Qu 1,2,3Yu Zhang 1,2,3[ ... ]Xinbo Zou 1,*
Author Affiliations
Abstract
1 School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
2 Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
3 School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
4 School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
Emission and capture characteristics of a deep hole trap (H1) in n-GaN Schottky barrier diodes (SBDs) have been investigated by optical deep level transient spectroscopy (ODLTS). Activation energy (Eemi) and capture cross-section (σp) of H1 are determined to be 0.75 eV and 4.67 × 10?15 cm2, respectively. Distribution of apparent trap concentration in space charge region is demonstrated. Temperature-enhanced emission process is revealed by decrease of emission time constant. Electric-field-boosted trap emission kinetics are analyzed by the Poole?Frenkel emission (PFE) model. In addition, H1 shows point defect capture properties and temperature-enhanced capture kinetics. Taking both hole capture and emission processes into account during laser beam incidence, H1 features a trap concentration of 2.67 × 1015 cm?3. The method and obtained results may facilitate understanding of minority carrier trap properties in wide bandgap semiconductor material and can be applied for device reliability assessment.
GaN deep level transient spectroscopy minority carrier trap time constant trap concentration 
Journal of Semiconductors
2024, 45(3): 032503
作者单位
摘要
1 电子科技大学 电子薄膜与集成器件国家重点实验室, 成都 610054
2 电子科技大学 重庆微电子产业技术研究院, 重庆 401331
提出了一种自适应时间常数匹配Gm-C电感电流采样方法。该方法通过比较Buck变换器SW点电压的过零时间与Gm-C滤波采样电压的过零时间,判断Gm-C时间常数是否与DCR时间常数匹配。使用鉴频鉴相器检测二者过零时间差,并控制双向计数器,实现对电容阵列等效容值的调制,最终实现自适应时间常数匹配Gm-C电感电流采样。与前序工作相比,该校准过程平滑,并且可以在DC-DC变换器正常工作情况下进行在线调制,能有效适应DC-DC变换器工作中温度、电压、电流等外部条件的变化。
自适应时间常数匹配 Gm-C电感电流采样 Buck变换器 adaptive time constant matching Gm-C inductor current sensing buck converter 
微电子学
2022, 52(5): 810
作者单位
摘要
中北大学 仪器科学与动态测试教育部重点实验室, 太原 030051
为了给热电偶时间常数测试中提供更加准确的阶跃温升信号, 优化控制效果, 提高热电偶时间常数测量的准确性, 采用Tornambe控制器来反馈控制半导体激光器的输出功率, 在MATLAB下的Simulink模块中实现整个系统的搭建, 并对系统进行同一输入信号下的仿真研究, 通过实验来比较2阶Tornambe控制器与比例-积分-微分(PID)控制在系统运行过程中的控制效果。结果表明, 采用PID控制器测得CO1-K型热电偶的时间常数为456.2ms, 而采用Tornambe控制器测得的热电偶时间常数为284.6ms。2阶Tornambe控制器能够有效缩短热电偶达到平衡温度的时间, 且在控制器结构参量整定上也更加简便, 具有较强的实用价值。
测量与计量 时间常数测试 Tornambe控制 热电偶 比例-积分-微分 measurement and metrology time constant test Tornambe controller thermcouple proportion-integration-di-fferentiation 
激光技术
2021, 45(5): 670
作者单位
摘要
中国电子科技集团公司第二十六研究所,重庆 400060
采用单光子技术中的延迟符合法原理,搭建了一套闪烁体衰减时间常数测量系统。选取国产的Ce∶LYSO和Ce∶LuAG两种闪烁体各3条进行衰减时间测量,将测试得到的衰减时间常数曲线进行单指数拟合,计算可得,Ce∶LYSO和Ce∶LuAG发光衰减时间常数平均值分别为43.85 ns及56.02 ns。结果表明,该套装置的测试结果与国内外同行其他测量方法得到的结果基本一致。
单光子 衰减时间常数 闪烁体 single photon decay time constant scintillator Ce∶LYSO Ce∶LYSO Ce∶LuAG Ce∶LuAG 
压电与声光
2020, 42(2): 200
郝晓剑 1,2,*闫庆丰 1,2
作者单位
摘要
1 中北大学电子测试技术国家重点实验室, 山西 太原 030051
2 中北大学仪器科学与动态测试教育部重点实验室, 山西 太原 030051
为了研究高斯脉冲激光激励下的热电偶时间常数测试方法, 构建以半导体激光器为加热源的热电偶动态性能测试系统, 采用负阶跃信号法分析不同温度下结点裸露式K型热电偶的动态响应曲线。实验首先通过调整激光器输出功率, 为热电偶提供目标温度。然后立即停止激光加热, 使热电偶产生负阶跃形式的动态测温过程。最后通过负阶跃信号法分析热电偶动态响应曲线计算得出时间常数。以目标温度为812.8 ℃和666.7 ℃为例分析其动态响应曲线中负阶跃部分, 计算得出对应的时间常数值分别为0.357 6 s和0.316 9 s。同时, 基于ANSYS有限元仿真软件平台进行高斯脉冲激光加热热电偶结点的瞬态传热分析研究。设定球形结点半径为1 mm, 导热系数为20 W/(m·K), 激光光斑半径为4 mm。通过仿真分析得到结点温度由957 ℃降至负阶跃温差的63.2%时所对应的时间为0.59 s, 这为热电偶时间常数值的精准测试提供一定的理论依据和测试方法。
高斯脉冲激光 热电偶 时间常数 有限元瞬态热分析 Gaussian pulsed laser thermocouple time constant finite element transient thermal analysis 
应用激光
2020, 40(3): 526
作者单位
摘要
1 电子科技大学 电子薄膜与集成器件国家重点实验室, 四川 成都 610054
2 中国人民解放军63963部队, 北京 100000
热时间常数是基于微测辐射热计的非制冷红外探测器的关键指标参数, 它与探测器的最高有效帧频直接相关, 因此准确测量热时间常数对于器件设计和应用都有举足轻重的意义。但目前无论是探测器热时间常数的标称值还是基于单元的热时间常数现有方法的测试值, 都无法建立与探测器的频率响应特性的直接定量函数关系, 以确定探测器工作的最小帧间时间间隔。直接基于阵列器件测量热时间常数的方法, 借助低于1/2帧频的斩波调制, 通过变频时域采集, 快速傅里叶变换(FFT)等常规测试手段, 提取有效的电压响应信号, 拟合频响曲线, 能快速有效地提取热时间常数。通过实测分析, 该测量方法具有准确度高、抗干扰能力强、稳定性高、测试用时短的特点, 且均采用通用的测试仪器, 无需单独制作测试样品, 具有较高的推广价值。
非制冷红外焦平面探测器 热时间常数 快速傅里叶变换 微测辐射热计 斩波器 uncooled infrared detectors thermal time constant FFT microbolometer chopper 
红外与激光工程
2019, 48(12): 1204003
郝晓剑 1,2,*刘亭剑 1,2
作者单位
摘要
1 中北大学 电子测试技术国家重点实验室, 太原 030051
2 中北大学 仪器科学与动态测试教育部重点实验室, 太原 030051
为了解决热电偶时间常数测试中阶跃温度问题, 采用模糊控制算法反馈控制激光器的输出功率, 设计了一种新的参量自适应模糊比例-积分-微分控制算法的闭环控制系统, 并进行了理论分析和实验验证, 测得某K型热电偶的时间常数为421.1ms。结果表明, 该算法能有效缩短平衡时间和增强控温系统的抗干扰能力。该结果对热电偶的校准研究是有帮助的, 具有一定的工程参考及应用价值。
测量与计量 时间常数测试 模糊控制 热电偶 模糊比例-积分-微分 闭环控制 measurement and metrology time constant test fuzzy control thermocouple fuzzy proportion-integration-differentiation closed-loop control 
激光技术
2019, 43(6): 784
作者单位
摘要
北京理工大学 光电学院 目标仿真实验室 精密光电测试仪器与技术北京市重点实验室,  北京 100081
MEMS红外图像转换芯片是一种将可见光转换为红外辐射并用于红外目标模拟器的直接辐射型器件。对MEMS红外图像转换芯片的热力学性能进行研究: 与标准黑体辐射谱对比表明芯片辐射光谱为黑体谱, 红外波段平均发射率0.638; 通过线扩散函数研究芯片横向热传导特性, 其热扩散距离随衬底厚度降低而减小, 在衬底上制作周期性像元阵列可以有效降低其热传导系数, 衬底厚度360nm的刻有像元的转换芯片热传导系数为0.1W/m·K ; 转换芯片的时间特性研究表明其时间常数随衬底厚度减小而变小, 衬底厚度345nm的芯片制冷至5℃时的时间常数为2.72ms。
红外场景生成 MEMS红外转换芯片 热力学性能 辐射光谱 热传导 时间常数 infrared scene generation the MEMS infrared transducer thermodynamic properties radiation spectrum thermal conductivity time constant 
光学技术
2019, 45(4): 502
刘亭剑 1,2郝晓剑 1,2,*
作者单位
摘要
1 中北大学 电子测试技术国家重点实验室, 太原 03005
2 中北大学 仪器科学与动态测试教育部重点实验室, 太原 030051
为了在热电偶时间常数测试中提供可靠的阶跃温度信号, 优化反馈控制效果, 进一步缩短阶跃温升信号的上升延时间, 确保热电偶时间常数测量的准确性, 采用中温黑体炉对高速辐射测温模块进行了静态温度-电压标定, 使用激光器对被校热电偶进行加热, 获取单次脉宽调制波(PWM)脉宽时间与温度之间的关系式; 理论分析了红外辐射测温模块电压与黑体温度、PWM波脉宽时间与温度之间非线性关系的原因, 对进一步优化控制效果、建立系统数学模型提供了实验验证。结果表明, 红外辐射测温模块输出电压与黑体温度呈4次方关系; 单次PWM波脉宽时间与温度呈3次方关系。该实验结果可为控制器反馈控制调节PWM波脉宽时间(占空比)提供理论依据。
传感器技术 激光技术 时间常数 激光加热 非线性 sensor technique laser technique time constant laser heating nonlinear 
激光技术
2019, 43(2): 251
作者单位
摘要
1 浙江师范大学数理与信息工程学院, 浙江 金华 321004
2 浙江金华广福医院, 浙江 金华 321004
时间相关吸收光谱技术, 如腔衰荡光谱技术(CRDS)和腔衰减相移光谱技术(CAPS), 是近三十几年发展起来的一类新型吸收光谱检测技术, 它具有探测灵敏度高、 响应速度快、 不受光源强度起伏变化影响等优点。 传统的吸收光谱技术都是基于Lambert-Beer定律, 如直接吸收光谱技术(DAS)、 波长调制光谱技术(WMS)和腔增强吸收光谱技术(CEAS)等, 这类光谱技术在探测物质微弱吸收的时候一旦遇到较强的背景光信号就变得难以测量, 而且光源的不稳定性也会对检测带来一定的限制。 时间相关吸收光谱技术由于其不受光源强度起伏变化的特点, 在很大程度上能够弥补传统吸收光谱技术所存在的缺陷, 但其也有自身的局限性。 首先在理论上, CRDS和CAPS这两种时间相关吸收光谱技术并不统一, 而且在现有光谱理论下, Pulse-CRDS在应用时使用的脉冲光源的脉宽必须远小于谐振腔本身的时间常数, 对于长脉宽的脉冲光或者反射率低(小于99.9%)的腔体, 现有理论将不再适用; CAPS在应用时光源调制信号必须是周期性的正弦信号或者方波信号, 对于其他类型的周期调制信号或者非周期性信号, 现有理论并没有涉及。 针对上述提到的时间相关吸收光谱技术的局限性, 提出了一种新的分析时间相关吸收光谱技术的方法, 即利用一阶传递函数, 将谐振腔视为一阶传感系统, 对时间相关吸收光谱技术理论进行统一解释, 在公式推导上证明新方法下的推导结果和现有理论结果的一致性。 针对Pulse-CRDS, 以高斯脉冲光为例, 给出一阶传感理论下的透射光强表达式, 并对一系列不同的脉冲宽度γ、 谐振腔时间常数τreal以及从输出信号中拟合而得的时间常数τanal进行了模拟仿真。 经过分析比较后发现, 当γ<0.3τreal时, τanal和τreal的偏差小于1%; 当γ>0.3τreal时, τanal和τreal的偏差渐渐变大, 将不再满足实验条件。 为了使Pulse-CRDS在长脉宽脉冲光下也能应用, 本文给出了修正函数, 使得在脉宽大于腔衰荡时间0.3倍的情况下, 经过修正补偿后, 衰荡时间的误差小于1%。 对于CAPS系统, 搭建相应实验平台, LED中心波长选用405 nm, 使用方波调制信号, 测量不同频率下的入射参考信号与探测信号的相位差和探测信号峰-峰值, 通过由一阶传递函数推导而得的相频特性和幅频特性, 拟合得到时间常数τ, 结果分别为7.24和7.25 μs, 残差范围分别为[-0.01, 0.02]和[-0.02, 0.025], 两者结果基本一致。 实验结果验证了一阶传感系统理论完全适用于时间相关光谱的信号分析, 并且一阶传感系统理论还使得时间相关光谱技术的理论得到了统一。
时间相关吸收光谱技术 腔衰荡光谱技术 相移光谱技术 一阶传递函数 时间常数 Time-dependent absorption spectroscopy Cavity ring-down spectroscopy Phase-shift spectroscopy First-order transfer function Time constant 
光谱学与光谱分析
2019, 39(3): 673

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!