High Power Laser Science and Engineering, 2020, 8 (4): 04000e36, Published Online: Nov. 23, 2020   

Generation of polarized particle beams at relativistic laser intensities Download: 648次

Author Affiliations
1 Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, Jülich, Germany
2 Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
3 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai201800, China
4 CAS Center for Excellence in Ultra-intense Laser Science, Shanghai201800, China
5 JARA-FAME (Forces and Matter Experiments), Forschungszentrum Jülich and RWTH Aachen University, Aachen, Germany
6 Institut für Kernphysik (IKP-4), Forschungszentrum Jülich, Jülich, Germany
Figures & Tables

Fig. 1. Scenario of the generation of spin-polarized electron beams via nonlinear Compton scattering: a relativistic electron bunch generated by laser-wakefield acceleration collides head-on with an elliptically polarized laser pulse and splits along the propagation direction into two parts with opposite transverse polarization[34]. OAP, optical parametric amplification.

下载图片 查看原文

Fig. 2. Schematic representation of electron spin polarization employing the standing wave of two colliding, circularly polarized laser pulses[39].

下载图片 查看原文

Fig. 3. Electrons propagating through a bichromatic laser pulse perform spin-flips dominantly in certain phases of the field: electrons initially polarized along the +y direction (yellow trajectories) flip their spin to down (trajectory colored purple) dominantly when By > 0, and this is where 1ω and 2ω add constructively (blue contours). The opposite spin-flip dominantly happens when By < 0, where the 1ω and 2ω components of the laser are out of phase (orange contours)[40].

下载图片 查看原文

Fig. 4. Scheme for laser-based polarized positron beam production[42].

下载图片 查看原文

Fig. 5. Sketch of the all-optical laser-driven polarized electron acceleration scheme using a pre-polarized target[46]. LG, Laguerre–Gaussian; OAP, optical parametric amplification.

下载图片 查看原文

Fig. 6. Schematic diagram showing laser acceleration of polarized protons from a dense hydrogen chloride gas target (brown). HCl molecules are initially aligned along the accelerating laser (indicated by the green area) propagation direction via a weak infrared (IR) laser. Blue and white balls represent the nuclei of hydrogen and chlorine atoms, respectively. Before the acceleration, a weak circularly polarized UV laser (purple area) is used to generate the polarized atoms along the longitudinal direction via molecular photo-dissociation. The brown curve indicates the initial density distribution of the gas-jet target. The polarized proton beam is shown on the right (blue) with arrows (red) presenting the polarization direction[54].

下载图片 查看原文

Fig. 7. Measured 3,4He2+ energy spectra accelerated from unpolarized helium gas jets[56]. IP, image plate.

下载图片 查看原文

Fig. 8. Sketch of the interplay between single particle trajectories (blue), spin (red) and radiation (yellow)[48].

下载图片 查看原文

Fig. 9. (a) Transverse distribution of the electron spin component Sy as a function of the deflection angles θx,y; (b) corresponding logarithmic electron-density distribution. The assumed laser peak intensity is I ≈ 1.38 × 1022 W/cm2 (a0 = 100), wavelength λ = 1 μm, the pulse duration amounts to five laser periods, focal radius 5 μm and ellipticity 0.05. The electron bunch with kinetic energy of 4 GeV and energy spread 6% has an initial angular divergence of 0.3 mrad[34].

下载图片 查看原文

Fig. 10. Achievable degree of electron polarization as a function of a quantum nonlinearity parameter χ0 and the bichromaticity parameter c2 (defining the fraction of the total pulse energy in the second harmonic, ). The calculations have been performed for 5 GeV electrons colliding with a 161 fs laser pulse, i.e., a00 = 1) = 16.5[40].

下载图片 查看原文

Fig. 11. Average polarization Sy as a function of the relative phase ϕ of the two-color laser pulse for different laser waist radii σ0. The assumed laser intensities are a0,1 = 2a0,2 = 100, I1 = 4I2 = 1.37 × 1022 W/cm2[41].

41]." class="imgSplash img-thumbnail" style="cursor:pointer;">

下载图片 查看原文

Fig. 12. Prediction from Wu et al.[46] for the achievable electron polarization dependent upon the electron current. More than 80% polarization can be achieved when a vortex LG laser pulse is used for the acceleration.

下载图片 查看原文

Fig. 13. Electron polarization distributions in the transverse phase space during laser-wakefield acceleration[49].

下载图片 查看原文

Fig. 14. Three-dimensional PIC simulation of proton acceleration assuming a gaseous HCl target with a hydrogen density of 8.5 × 1019 cm−3 and a circularly polarized laser pulse with 800 nm wavelength and a normalized amplitude of a0 = 200. (a) Simulated proton density; (b) polarization as a function of the proton energy[53].

下载图片 查看原文

Fig. 15. (a) Three-dimensional PIC simulation for a gaseous HCl target with molecular density of 1019 cm−3 and 1.3 PW laser with phase-space distribution; (b) spin spread of protons with energy E > 20 MeV on the Bloch sphere[54].

下载图片 查看原文

Fig. 16. Simulated normalized He2+ ion-number density during the passage of a peta-watt laser pulse (6.5 ps after it entered the simulation box at the left boundary) through an unpolarized helium gas jet target. (a) 2%; (b) 3%; (c) 4%; (d) 12% critical density[56].

下载图片 查看原文

Fig. 17. Perspective view of the 3D model of the fully mounted magnetic system inside the PHELIX chamber[57,67].

下载图片 查看原文

Fig. 18. The 1064 nm IR laser propagates along the x-axis to align the bonds of the HCl molecules, and then UV light with a wavelength of 213 nm, propagating along the z-axis, is used to photo-dissociate the HCl molecules. A 234.62 nm UV light is used to ionize the Cl atoms. Thermal expansion of the electrons creates a large Coulomb field that expels the Cl ions. A fully polarized electron target is therefore produced for sequential acceleration[46].

下载图片 查看原文

Fig. 19. Technical drawing of the optical setup including the JuSPARC_MIRA laser system and the target chamber for the polarized proton target[64].

下载图片 查看原文

Fig. 20. Schematic view of the interaction chamber for production and storage of polarized H2, D2, HD and foils[71].

下载图片 查看原文

Fig. 21. Schematic view of the setup for proton polarization measurements by Raab et al.[72] Protons are accelerated from an unpolarized gold foil to energies of about 3 MeV, scattered in a silicon foil (scattering target) and finally detected with CR-39 detectors.

下载图片 查看原文

Markus Büscher, Anna Hützen, Liangliang Ji, Andreas Lehrach. Generation of polarized particle beams at relativistic laser intensities[J]. High Power Laser Science and Engineering, 2020, 8(4): 04000e36.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!