中国激光, 2013, 40 (2): 0203009, 网络出版: 2013-01-04   

基片表面缺陷粒子在激光波束作用下的辐射力分析

Analysis of Radiation Forces Exerted on Defect Particle on the Wafer by a Laser Beam
作者单位
1 西安工业大学光电工程学院, 陕西 西安 710032
2 西安电子科技大学理学院, 陕西 西安 710071
摘要
针对基片无损检测工作中缺陷粒子的清除问题,基于广义米氏理论,结合球形缺陷粒子对激光波束的散射理论,研究了沿基片水平方向入射高斯波束对介质球缺陷粒子的辐射力。根据连带勒让德函数及三角函数的正交关系,给出作用在高斯波束中介质缺陷球体粒子上的横向以及轴向辐射力的解析表达式,并分析不同参数对辐射力的影响。结果表明,随激光束腰半径的减小,辐射力峰值变大;随束腰半径增大,光轴的能量降低,散射力减小;随粒子折射率减小,散射力逐渐减小。工程上可通过减小激光波束束腰半径加大激光能量,以便更有效地清除缺陷粒子;亦可通过对辐射力的定量分析实现缺陷材质的检测。
Abstract
Based on generalized Lorenz-Mie theory, the radiation forces exerted on defect particle on the wafer by a laser beam are derived combing the scattering theory about sphere particle to clean the defect particle in the optical nondestructive examination. According to relationship between spherical vector wave functions and triangle functions, the analytical expressions of the axial radiation force and the transverse radiation force exerted on defect particle by an Gaussian beam are given and the influences of many factors on the radiation forces are analyzed numerically in details. The results show that the maximum radiation forces become larger with the particle radius becoming less. The energy of optical axis and scattering forces become less with the particle radius becoming larger. The smaller the dielectric constant, the smaller the radiation force. In the project, the smaller beam waist widths is used with much more energy to clear the defect particle more efficiently. In addition, the defect particle material is detected by quantitative analysis to radiation forces.
参考文献

[1] 巩蕾, 吴振森. 基片与不同方位多形态缺陷粒子的复合光散射特性分析[J]. 光学学报, 2012, 32(6): 0629003

    Gong Lei, Wu Zhensen. Analysis of composite light scattering properties between wafers and many shapes of particles with different positions[J]. Acta Optica Sinica, 2012, 32(6): 0629003

[2] H. K. Park, C. P. Grigoropoulos, W. P. Leung et al.. A practical excimer laser-based cleaning tool for removal of surface contaminants[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 1994, 17(4): 631~643

[3] A. Ashkin. Acceleration and trapping of particles by radiation pressure[J]. Phys. Rev. Lett., 1970, 24(4): 156~159

[4] A. Ashkin, J. M. Dziedzic. Optical trapping and manipulation of viruses and bacteria[J]. Science, 1987, 235(4795): 1517~1520

[5] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm et al.. Observation of a single-beam gradient force optical trap from dielectric particles[J]. Opt. Lett., 1986, 11(5): 288~290

[6] S. Nemoto, H. Togo. Axial force acting on a dielectric sphere in a focused laser beam[J]. Appl. Opt., 1998, 37(9): 6386~6394

[7] R. C. Gauthier. Laser-trapping properties of dual-component spheres[J]. Appl. Opt., 2002, 41(33): 7135~7144

[8] Y. K. Nahmias, B. Z. Gao, D. J. Odde. Dimensionless parameters for the design of optical traps and laser guidance systems[J]. Appl. Opt., 2004, 43(20): 3999~4006

[9] F. L. Mao, Q. R. Xing, K. Wang et al.. Calculation of axial optical forces exerted on medium-sized particles by optical trap[J]. Optics & Laser Technology, 2007, 39(1): 34~39

[10] 巩蕾, 吴振森. 基片表面微球体纳米级缺陷的光散射分析[J]. 中国激光, 2011, 38(1): 0110001

    Gong Lei, Wu Zhensen. Analysis of light scattering about slightly non-spherical nanoparticles on wafers[J]. Chinese J. Lasers, 2011, 38(1): 0110001

[11] 巩蕾, 吴振森. 基片及其上方回转椭球粒子极化光散射[J]. 强激光与粒子束, 2010, 22(6): 1393~1398

    Gong Lei, Wu Zhensen. Study on the polarized light scattering interaction between wafers and spheroid particles above[J]. High Power Laser and Particle Beams, 2010, 22(6): 1393~1398

[12] Z. J. Li, Z. S. Wu, H. Li et al.. Arbitrary direction incident Gaussian beam scattering by multispheres[J]. Chin. Phys. B, 2011, 20(8): 081101

[13] 吴振森, 郭立新, 吴成明. 离轴多层球对高斯波束的光散射[J]. 光学学报, 1998, 18(6): 682~687

    Wu Zhensen, Guo Lixin, Wu Chengming. Light scattering of Gaussian beam from an off-axis multilayered sphere[J]. Acta Optica Sinica, 1998, 18(6): 682~687

[14] Y. L. Xu. Electromagnetic scattering by an aggregate of spheres[J]. Appl. Opt., 1995, 34(21): 4573~4588

[15] C. F. Bohren, D. R. Huffman. Absorption and Scattering of Light by Small Particles[M]. New York, Wiley-Interscience, 1983. 98~100

[16] A. Doicu, T. Wriedt. Computation of the beam-shape coefficients in the generalized Lorenz-Mie theory by using the translational addition theorem for spherical vector wave functions[J]. Appl. Opt., 1997, 36(13): 2971~2978

[17] 韩国霞, 韩一平. 激光对含偏心核球形粒子的辐射俘获力[J]. 物理学报, 2009, 58(9): 6167~6172

    Han Guoxia, Han Yiping. Radiation force of a sphere with an eccentric inclusion illuminated by a laser beam[J]. Acta Physica Sinica, 2009, 58(9): 6167~6172

[18] Z. J. Li, Z. S. Wu, Q. C. Shang. Calculation of radiation forces exerted on a uniaxial anisotropic sphere by an off-axis incident Gaussian beam[J]. Opt. Express, 2011, 19(17): 16044~16057

[19] Z. J. Li, Z. S. Wu, Q. C. Shang et al.. Calculation of radiation forces exerted on a uniaxial anisotropic sphere by an incident Gaussian beam with arbitrary propagation and polarization directions[J]. Opt. Express, 2012, 20(15): 16421~16435

[20] T. C. B. Schut, G. Hesselink, B. G. De Grooth et al.. Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps[J]. Cytometry, 1991, 12(6): 479~485

巩蕾, 吴振森, 李正军, 白璐, 高明. 基片表面缺陷粒子在激光波束作用下的辐射力分析[J]. 中国激光, 2013, 40(2): 0203009. Gong Lei, Wu Zhensen, Li Zhengjun, Bai Lu, Gao Ming. Analysis of Radiation Forces Exerted on Defect Particle on the Wafer by a Laser Beam[J]. Chinese Journal of Lasers, 2013, 40(2): 0203009.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!