光学学报, 2014, 34 (9): 0901001, 网络出版: 2014-07-22   

热晕效应模式法自适应光学校正的数值模拟

Numerical Simulation of Modal Method Based Adaptive Optics Correction Thermal Blooming
作者单位
西北核技术研究所, 陕西 西安 710024
摘要
改进了泽尼克模式波前重构数值模拟方法,避免了传统方法中大量的面积分运算,对准直光束瞬态热晕效应模式法自适应光学校正进行了数值模拟研究。数值模拟结果表明,由于模式混淆误差的影响,使泽尼克重构模式阶数的选择受限,即存在一个最大的重构模式阶数,大于该模式阶数会导致校正效果迅速变差,且最大模式阶数的大小与热晕强度无关。对于子孔径分布为8×8的69单元自适应光学系统,最大模式阶数为37阶;同直接斜率法相比,泽尼克模式法可以通过重构模式选择,提高自适应光学系统对热晕校正的稳定性,抑制热晕补偿不稳定性的发生。
Abstract
Tradition Zernike modal wave front reconstruction method is improved in which a lot of surface integrations are avoided. Collimated thermally bloomed beam corrected by adaptive optics (AO) is numerically simulated. The results show that, because of model aliasing error, the Zernike reconstruction mode order is finite, which means that there exists a largest reconstruction mode order. When chosen reconstruction mode order is greater than the largest order, correction efficiency decreases quickly. And the largest order has no relation with thermal blooming strength. For a 69 elements AO system, which sub-aperture distribution is 8×8, the largest reconstruction mode order is 37. Compared with direct slope wave front reconstruction method, Zernike modal method can increase the adaptive optics system stability through choosing reconstruction mode when correction of thermal blooming distortes wave front.
参考文献

[1] R K Tyson. Principles of Adaptive Optics (2nd Edition) [M]. New York: Academic Press, 1997. 257-273.

[2] M Bass. Handbook of Optics, Volum V (3rd Edition) [M]. New York: McGraw Hill Press, 2010. 174-220.

[3] Zheng Zhaoying, Li Changwei, Li Bangming, et al.. Analysis and demonstration of PID algorithm based on arranging transient process for adaptive optics [J]. Chin Opt Lett, 2013, 11(11): 110101.

[4] Mu Jie, Zheng Wenjia, Li Hai. Real-time measurement of atmospheric parameters for 127-element adaptive optics system of 1.8-m telescope [J]. Chin Opt Lett, 2012, 10(8): 080602.

[5] Wang xiaohuo, Fu Qiang, Huang Linhai, et al.. Experimental research on application of Hartmann micro-lens array in coherent beam combination of two-dimensional laser array [J]. Chin Opt Lett, 2013, 10(8): 081402.

[6] 颜召军, 李新阳, 饶长辉. 自适应光学闭环系统实时多路自适应控制算法[J]. 光学学报, 2013, 33(3): 0301002.

    Yan Zhaojun, Li Xinyang, Rao Changhui. Multi-channel adaptive control algorithm for closed loop adaptive optics system [J]. Acta Optica Sinica, 2013, 33(3): 0301002.

[7] 严海星, 陈涉, 张德良, 等. 自适应光学系统的模式法数值模拟[J]. 光学学报, 1998, 18(1): 103-108.

    Yan Haixing, Chen She, Zhang Deliang, et al.. Numerical simulation of an adaptive optics system by means of modal wave front reconstruction [J]. Acta Optica Sinica, 1998, 18(1): 103-108.

[8] J F Schonfeld. Theory of compensated laser propagation through strong thermal blooming [J]. The Lincoln Laboratory Journal, 1992, 5(1): 131~150.

[9] B Johnson. Thermal-blooming laboratory experiments [J]. The Lincoln Laboratory Journal, 1992, 5(1): 151-170.

[10] 张鹏飞, 范承玉, 乔春红, 等. 聚焦光束热晕效应相位补偿定标规律研究[J]. 中国激光, 2012, 39(2): 0213002.

    Zhang Pengfei, Fan Chengyu, Qiao Chunhong, et al.. Analysis of scaling laws for phase compensation of focused beam under thermal blooming conditions [J]. Chinese J Lasers, 2012, 39(2): 0213002.

[11] J Barchers. Linear analysis of thermal blooming compensation instabilities in laser propagation [J]. J Opt Soc Am A, 2009, 26(7): 1638-1653.

[12] J Schmidt. Numerical Simulation of Optical Wave Propagation [M]. Washington: SPIE Press, 2010. 65-84.

[13] R J Noll. Zernike polynomials and atmospheric turbulence [J]. J Opt Soc Am, 1976, 66(3): 207-211.

[14] O Soloviev, G Vdovin. Estimation of the total error of modal wave front reconstruction with Zernike polynomials and Hartmann-Schack test [C]. SPIE, 2005, 6018: 60181D.

[15] F Quiros-Pacheco. Reconstruction and Control Laws for Multi-Conjugate Adaptive Optics in Astronomy [D]. London: Imperial College, 2005.

[16] 李新阳, 姜文汉. 哈特曼传感器对湍流畸变波前的泽尼克模式复原误差[J]. 强激光与粒子束, 2002, 14(2): 243-249.

    Li Xinyang, Jiang Wenhan. Zernike modal wave front reconstruction error of Hartmann sensor on measuring the atmosphere disturbed wave front [J]. High Power Laser and Particle Beams, 2002, 14(2): 243-249.

[17] T J Karr. Thermal blooming compensation instabilities [J]. J Opt Soc Am A, 1989, 6(7): 1038-1048.

闫伟, 陈志华, 杜太焦, 关奇. 热晕效应模式法自适应光学校正的数值模拟[J]. 光学学报, 2014, 34(9): 0901001. Yan Wei, Chen Zhihua, Du Taijiao, Guan Qi. Numerical Simulation of Modal Method Based Adaptive Optics Correction Thermal Blooming[J]. Acta Optica Sinica, 2014, 34(9): 0901001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!