Frontiers of Optoelectronics, 2015, 8 (4): 424, 网络出版: 2016-01-06  

Influence of optical filtering on transmission capacity in single mode fiber communications

Influence of optical filtering on transmission capacity in single mode fiber communications
作者单位
1 Department of Electronics and Communication Engineering, Jawaharlal Nehru Technological (JNT) University, Kakinada, AP, India
2 Department of Electronics and Communication Engineering, Vasireddy Venkatadri Institute of Technology, Guntur, AP, India
摘要
This paper presents the design and analysis of optical filters that are placed at the output of directly modulated vertical cavity surface emitting laser (VCSEL) in the process of inexpensive transmitter’s implementation for upcoming generation optical access network. Generation of non return to zero (NRZ) optical signal from the transmitter for 110 km error-free single mode fiber (SMF) transmission at 10 Gb/s with bit error rate (BER) of 10–30 in the absence of the external modulator and encoder was proposed. Effects of super-Gaussian and Butterworth optical filters at VCSEL output were demonstrated to maximize performance of SMF optical systems without need of any dispersion compensation technique.
Abstract
This paper presents the design and analysis of optical filters that are placed at the output of directly modulated vertical cavity surface emitting laser (VCSEL) in the process of inexpensive transmitter’s implementation for upcoming generation optical access network. Generation of non return to zero (NRZ) optical signal from the transmitter for 110 km error-free single mode fiber (SMF) transmission at 10 Gb/s with bit error rate (BER) of 10–30 in the absence of the external modulator and encoder was proposed. Effects of super-Gaussian and Butterworth optical filters at VCSEL output were demonstrated to maximize performance of SMF optical systems without need of any dispersion compensation technique.
参考文献

[1] Schires K, Hurtado A, Henning I D, Adams M J. Polarization and time-resolved dynamics of a 1550-nm VCSEL subject to orthogonally polarized optical injection. IEEE Photonics Journal, 2011, 3(3): 555–563

[2] Lin C C, Chi Y C, Kuo H C, Peng P C, Chang-Hasnain C J, Lin G R. Beyond-bandwidth electrical pulse modulation of a TO-Can packaged VCSEL for 10 Gbit/s injection-locked NRZ-to-RZ transmission. Journal of Lightwave Technology, 2011, 29(6): 830– 841

[3] Papakonstantinou I, Papadopoulos S, Soos C, Troska J, Vasey F, Vichoudis P. Modal dispersion mitigation in standard single-mode fibers at 850 nm with fiber mode filters. IEEE Photonics Technology Letters, 2010, 22(20): 1476–1478

[4] Koizumi K, Yoshida M, Nakazawa M. A 10-GHz optoelectronic oscillator at 1.1 μm using a single-mode VCSEL and a photonic crystal fiber. IEEE Photonics Technology Letters, 2010, 22(5): 293– 295

[5] Gatto A, Boletti A, Boffi P, Neumeyr C, Ortsiefer M, R nneberg E, Martinelli M. 1.3-μm VCSEL transmission performance up to 12.5 Gbs for metro access networks. IEEE Photonics Technology Letters, 2009, 21(12): 778–780

[6] Rao Y, Yang W, Chase C, Huang M C Y,Worland D P, Khaleghi S, Chitgarha M R, Ziyadi M, Willner A E, Chang-Hasnain C J. Longwavelength VCSEL using high-contrast grating. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 1701311

[7] Killey R I, Watts P M, Mikhailov V, Glick M, Bayvel P. Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach–Zehnder modulator. IEEE Photonics Technology Letters, 2005, 17(3): 714–716

[8] Kobayashi W, Arai M, Yamanaka T, Fujiwara N, Fujisawa T, Ishikawa M, Tsuzuki K, Shibata Y, Kondo Y, Kano F. Wide temperature range (25°C–100°C) operation of a 10-Gb/s 1.55-μm electroabsorption modulator integrated DFB laser for 80-km SMF transmission. IEEE Photonics Technology Letters, 2009, 21(15): 1054–1056

[9] Yi H, Long Q, TanW, Li L,Wang X, Zhou Z. Demonstration of low power penalty of silicon Mach-Zehnder modulator in long-haul transmission. Optics Express, 2012, 20(25): 27562–27568

[10] Kipnoo E R, Kourouma H, Waswa D, Leitch A W R, Gibbon T B. Analysis of VCSEL transmission for the square kilometre array (SKA) in South Africa. In: Proceedings of the Southern Africa Telecommunication Networks and Applications Conference (SATNAC), George, South Africa. 2012, 483–484

[11] Cheng X,Wen Y J, Xu Z, Shao X, Wang Y, Yeo Y. 10-Gb/s WDMPON transmission using uncooled, directly modulated free-running 1.55-μm VCSELs. In: proceedings of European Conference on Optical Communication, Brussels, Belgium. 2008, Paper P.6.02

[12] Hofmann W, Grüner-Nielsen L, R nneberg E, B hm G, Ortsiefer M, Amann M C. 1.55-μm VCSEL modulation performance with dispersion-compensating fibers. IEEE Photonics Technology Letters, 2009, 21(15): 1072–1074

[13] Nishiyama N, Caneau C, Downie J D, Sauer M, Zah C E. 10-Gbps 1.3 and 1.55-μm InP-based VCSELs: 85°C 10-km error-free transmission and room temperature 40-km transmission at 1.55- μm with EDC. In: Proceedings of Optical Fiber Communication Conference. 2006, PDP23

[14] Rotich Kipnoo E K, Kourouma H Y S, Gamatham R R G, Leitch A W R, Gibbon T B. Chromatic dispersion compensation for VCSEL transmission for applications such as square kilometre array South Africa. In: Proceedings of the 58th annual SAIP conference, Pretoria, South Africa. 2013, paper 171

[15] Boffi B, Boletti A, Gatto A, Martinelli M. VCSEL to VCSEL injection locking for uncompensated 40-km transmission at 10 Gb/s. In: Proceedings of National Fiber Optic Engineers Conference, San Diego, USA. 2009, JThA32

[16] Fidler F, Cerimovic S, Dorrer C. High-speed optical characterization of intensity and phase dynamics of a 1.55 μm VCSEL for shortreach applications. In: Proceedings of Optical Fiber Communication Conference. 2006, OW175

[17] Jensen J B, Rodes R, Caballero A, Cheng N, Zibar D, Monroy I T. VCSEL based coherent PONs. Journal of Lightwave Technology, 2014, 32(8): 1423–1433

[18] Lin C C, Kuo H C, Peng P C, Lin G R. Chirp and error rate analyses of an optical-injection gain-switching VCSEL based all-optical NRZ-to-PRZ converter. Optics Express, 2008, 16(7): 4838–4847

[19] Mena P V, Morikuni J J, Kang S M, Harton A V, Wyatt K W. A simple rate-equation-based thermal VCSEL model. Journal of Lightwave Technology, 1999, 17(5): 865–872

[20] Cartledge J C, Burley G S. The effect of laser chirping on lightwave system performance. Journal of Lightwave Technology, 1989, 7(3): 568–573

[21] Pfennigbauer M, Winzer P J. Choice of MUX/DEMUX filter characteristics for NRZ, RZ, and CSRZ DWDM systems. Journal of Lightwave Technology, 2006, 24(4): 1689–1696

[22] Slobodnik A J, Fenstermacher T E, Kearns W J, Roberts G A, Silva J H, Noonan J P. SAW Butterworth contiguous filters at UHF. IEEE Transactions on Sonics and Ultrasonics, 1979, SU-26(3): 246–253

[23] Slobodnik A J, Kearns W J, Noonan J P. Design, fabrication and testing of SAW Butterworth filters. In: IEEE MITTs International Microwave Symposium. 1975, 353–355

[24] Dai B, Gao Z,Wang X, Chen H, Kataoka N,Wada N. Generation of versatile waveforms from CW light using a dual-drive Mach- Zehnder modulator and employing chromatic dispersion. Journal of Lightwave Technology, 2013, 31(1): 145–151

M. Venkata SUDHAKAR, Y. Mallikarjuna REDDY, B. Prabhakara RAO. Influence of optical filtering on transmission capacity in single mode fiber communications[J]. Frontiers of Optoelectronics, 2015, 8(4): 424. M. Venkata SUDHAKAR, Y. Mallikarjuna REDDY, B. Prabhakara RAO. Influence of optical filtering on transmission capacity in single mode fiber communications[J]. Frontiers of Optoelectronics, 2015, 8(4): 424.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!