强激光与粒子束, 2013, 25 (6): 1587, 网络出版: 2013-04-23   

太赫兹通信中的一种高速并行均衡算法及其FPGA实现

High-speed parallel equalization algorithm and its FPGA implementation in THz communication
林长星 1,2,*邓贤进 1,2张健 1,2
作者单位
1 中国工程物理研究院 电子工程研究所, 四川 绵阳 621900
2 中国工程物理研究院 太赫兹研究中心, 四川 绵阳 621900
摘要
基于驰豫超前变换中的超前展开、求和近似和延时近似技术,提出了流水线并行自适应CMA盲均衡算法。利用基于迭代短卷积的并行FIR滤波算法分析了提出的并行自适应盲均衡算法的滤波部分的高效实现结构;再利用基于组合短卷积的并行自适应系数更新算法分析了提出的并行均衡算法的系数更新部分的高效实现结构,从而得到了基于短卷积的流水线并行自适应盲均衡的完整实现框图,并分析了各模块的流水线延时需满足的关系。最后对该并行自适应盲均衡算法进行了FPGA量化实现,并通过MATLAB仿真及实际FPGA实现结果的对比,验证了本并行均衡算法的正确性和有效性。
Abstract
Using look-ahead unwrap, sum relaxation and delay relaxation of relaxed look-ahead technique, we develop a pipelined parallel adaptive CMA blind equalization algorithm. An iterated short convolution based fast parallel FIR filter is used to analyze the implementation structure of the filter part of the proposed parallel adaptive equalizer. Meanwhile, a combined short convolution based parallel adaptive weight update algorithm is used to analyze the implementation structure of the weight update part of the proposed parallel adaptive equalizer. A short convolution based, effective pipelined parallel implementation structure of adaptive CMA blind equalization algorithm is then obtained, and the required relationship of pipelined delays of different modules is achieved. FPGA implementation and simulations of the proposed algorithm are also conducted, and compared with MATLAB simulation.
参考文献

[1] Lin Changxing, Shao Beibei, Zhang Jian, A high data rate parallel demodulator suited to FPGA implementation[C]//Proceedings of ISPACS 2010-2010 International Symposium on Intelligent Signal Processing and Communication Systems. 2010.

[2] Parhi K K. VLSI digital signal processing systems: design and implementation[M].New York: Wiley, 1999.

[3] Shanbhag N R, Parhi K K. Relaxed look-ahead pipelined LMS adaptive filters and their application to ADPCM coder[J]. IEEE Trans on Circuits and Systems-Ⅱ: Analog and Digital Signal Processing, 1993, 40(12): 753-766.

[4] Granata J, Conner M, Tolimieri R. A tensor product factorization of the linear convolution[J]. IEEE Trans on Circuits and Systems, 1991, 38(11): 1364-1366.

[5] Granata J, Conner M, Tolimieri R. The tensor product: a mathematical programming language for FFTs and other fast DSP operations[J]. IEEE Signal Processing Magazine, 1992, 9(1): 40-48.

[6] Cheng C, Parhi K K. Hardware efficient fast parallel FIR filter structures based on iterated short convolution[C]//Proceedings of the 2004 International Symposium on Circuits and Systems, 2004.

[7] Cheng C, Parhi K K. Hardware efficient fast parallel FIR filter structures based on iterated short convolution[J]. IEEE Trans on Circuits and Systems-Ⅰ: Regular Papers, 2004, 51(8): 1492-1500.

[8] Cheng C, Parhi K K. Low cost parallel adaptive filter structures[C]//Proceedings of Conference Record of the 39th Asilomar Conference on Signals, Systems and Computers. 2005: 354-358.

[9] http://spib.rice.edu/.

林长星, 邓贤进, 张健. 太赫兹通信中的一种高速并行均衡算法及其FPGA实现[J]. 强激光与粒子束, 2013, 25(6): 1587. Lin Changxing, Deng Xianjin, Zhang Jian. High-speed parallel equalization algorithm and its FPGA implementation in THz communication[J]. High Power Laser and Particle Beams, 2013, 25(6): 1587.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!