红外与毫米波学报, 2018, 37 (2): 241, 网络出版: 2018-05-29  

充氩气Kagome空芯光子晶体光纤中超连续光谱产生的动力学研究

Dynamics of supercontinuum generation in argon-filled Kagome-structured hollow-core photonic crystal fiber
作者单位
1 天津大学 精密仪器与光电子工程学院 光电信息技术教育部重点实验室,天津 300072
2 中国空间技术研究院 钱学森空间技术实验室,北京 100094
摘要
利用飞秒激光在充氩气的Kagome结构空芯光子晶体光纤中产生了高亮度宽带的超连续光谱. 通过改变填充气体的气压以及输入激光的单脉冲能量可以对产生的超连续光谱进行控制. 利用中心波长980 nm的飞秒脉冲作为抽运获得了光谱范围覆盖340~1 550 nm的宽带超连续光谱. 通过基于载波的单向脉冲传输方程研究了超短脉冲在充氩气的Kagome光纤中产生超连续光谱的动力学过程.
Abstract
Bright supercontinuum was experimentally generated in an argon-filled hypocycloid-core Kagome fiber pumped by a femtosecond laser. The spectrum of the generated supercontinuum can be controlled by changing the gas pressure and input pulse energy. By use of a pump laser centered at 980 nm, a bright broadband supercontinuum ranging from 340 nm to 1550 nm was generated. The dynamics of the supercontinuum generation in the argon-filled Kagome fiber was investigated using an accurate carrier-resolving unidirectional pulse propagation equation.
参考文献

[1] Dudley J M, Genty G R, Coen S. Supercontinuum generation in photonic crystal fiber [J]. Rev. Mod. Phys., 2006, 78(4): 1135-1184.

[2] Alfano R R, Shapiro S L. Emission in the Region 4000 to 7 000  Via Four-Photon Coupling in Glass [J]. Phys. Rev. Lett., 1970, 24(11): 584-587.

[3] Ranka J K, Windeler R S, Stentz A J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm [J]. Opt. Lett., 2000, 25(1): 25-27.

[4] Nisoli M, De Silvestri S, Svelto O. Generation of high energy 10 fs pulses by a new pulse compression technique [J]. Appl. Phys. Lett., 1996, 68(20): 2793-2795.

[5] Durfee C G, Backus S, Murnane M M, et al. Ultrabroadband phase-matched optical parametric generation in the ultraviolet by use of guided waves [J]. Opt. Lett., 1997, 22(20): 1565.

[6] Popmintchev T, Chen M, Arpin P, et al. The attosecond nonlinear optics of bright coherent X-ray generation [J]. Nat. Photonics., 2010, 4(12): 822-832.

[7] Welch M G, Cook K, Correa R A, et al. Solitons in Hollow Core Photonic Crystal Fiber: Engineering Nonlinearity and Compressing Pulses [J]. J. Lightwave Technol., 2009, 27(11): 1644-1652.

[8] Ouzounov D G. Generation of megawatt optical solitons in hollow-core photonic band-gap fibers [J]. Science, 2003, 301(5640): 1702-1704.

[9] Russell P S J, H lzer P, Chang W, et al. Hollow-core photonic crystal fibres for gas-based nonlinear optics [J]. Nat. Photonics., 2014, 8(4): 278-286.

[10] Travers J C, Chang W, Nold J, et al. Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited][J]. J. Opt. Soc. Am. B., 2011, 28(12): A11-A26.

[11] Benabid F. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber [J]. Science, 2002, 298(5592): 399-402.

[12] Pearce G J, Wiederhecker G S, Poulton C G, et al. Models for guidance in kagome-structured hollow-core photonic crystal fibres [J]. Opt. Express, 2007, 15(20): 12680-12685.

[13] Couny F, Benabid F, Roberts P J, et al. Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs [J]. Science, 2007, 318(5853): 1118-1121.

[14] Février S, Beaudou B T, Viale P. Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification [J]. Opt. Express, 2010, 18(5): 5142-5150.

[15] Wang Y Y, Wheeler N V, Couny F, et al. Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber [J]. Opt Lett., 2011, 36(5): 669-671.

[16] Yu F, Knight J C. Negative curvature hollow-core optical fiber [J]. IEEE J. Sel. Top. Quantum Electron., 2016, 22(2): 146-155.

[17] Meng F, Gao S, Wang Y, et al. Efficient dispersive waves generation from argon-filled anti-resonant nodeless fiber [C]. CLEO_SI.2017.STu3K.4., 2017.

[18] Debord B, Alharbi M, Vincetti L, et al. Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining [J]. Opt. Express, 2014, 22(9):10735-10746.

[19] Guichard F, Giree A, Zaouter Y, et al. Nonlinear compression of high energy fiber amplifier pulses in air-filled hypocycloid-core Kagome fiber [J]. Opt. Express, 2015, 23(6):7416-7423.

[20] Mak K F, Seidel M, Pronin O, et al. Compressing μJ-level pulses from 250 fs to sub-10 fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages [J]. Opt Lett., 2015, 40(7): 1238-1241.

[21] Joly N Y, Nold J, Chang W, et al. Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber [J]. Phys. Rev. Lett., 2011, 106(20): 203901.

[22] ZHOU Y Z, HUANG L L, Chai L, et al. The beam combination of multi-core photonic crystal fiber by using the Kagome fiber [J]. Acta Phys. Sin.,(周雨竹,黄莉莉,柴路,等. 利用Kagome光纤实现多芯光子晶体光纤的输出合束. 物理学报)2016, 65(2): 024206.

[23] Litchinitser N M, Dunn S C, Usner B, et al. Resonances in microstructured optical waveguides [J]. Opt Express, 2003, 11(10): 1243-1251.

[24] Chang W, Nazarkin A, Travers J C, et al. Influence of ionization on ultrafast gas-based nonlinear fiber optics [J]. Opt. Express, 2011, 19(21): 21018-21027.

[25] Couairon A, Brambilla E, Corti T, et al. Practitioner’s guide to laser pulse propagation models and simulation [J]. Eur. Phys. J. Spec. Top., 2011, 199(1): 5-76.

[26] Kolesik M, Moloney J V. Modeling and simulation techniques in extreme nonlinear optics of gaseous and condensed media [J]. Rep. Prog. Phys., 2014, 77(1): 016401.

[27] Sinkin O V, Holzlohner R, Zweck J, et al. Optimization of the split-step fourier method in modeling optical-fiber communications systems [J]. J. Lightwave Technol., 2003, 21(1): 61-68.

[28] Husakou A V, Herrmann J. Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers [J]. Phys. Rev. Lett., 2001, 87(20): 203901.

[29] Archambault J L, Black R J, Lacroix S, et al. Loss calculations for antiresonant waveguides [J]. J. Lightwave Technol., 1993, 11(3): 416-423.

[30] Vincetti L, Setti V. Waveguiding mechanism in tube lattice fibers [J]. Opt. Express, 2010, 18(22): 23133-23146.

[31] Borzsonyi A, Heiner Z, Kalashnikov M P, et al. Dispersion measurement of inert gases and gas mixtures at 800 nm [J]. Appl. Opt., 2008, 47(27): 4856-4863.

[32] Agrawal G P. Nonlinear fiber optics [M]. Amsterdam: Elsevier/Academic Press, 2013.

[33] Balciunas T, Fourcade-Dutin C, Fan G, et al. A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre [J]. Nat. Communications, 2015, 6: 6117.

[34] Nazarkin A, Korn G. Pulse self-compression in the subcarrier cycle regime [J]. Phys. Rev. Lett., 1999, 83(23): 4748-4751.

孟凡超, 刘博文, 王思佳, 刘军库, 栗岩锋, 王清月, 胡明列. 充氩气Kagome空芯光子晶体光纤中超连续光谱产生的动力学研究[J]. 红外与毫米波学报, 2018, 37(2): 241. MENG Fan-Chao, LIU Bo-Wen, WANG Si-Jia, LIU Jun-Ku, LI Yan-Feng, WANG Qing-Yue, HU Ming-Lie. Dynamics of supercontinuum generation in argon-filled Kagome-structured hollow-core photonic crystal fiber[J]. Journal of Infrared and Millimeter Waves, 2018, 37(2): 241.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!