大气与环境光学学报, 2015, 10 (2): 139, 网络出版: 2015-04-14   

差分光学吸收光谱技术监测气溶胶研究进展

Progress in Aerosol Measurements Based on Differential Optical Absorption Spectroscopy Method
作者单位
1 上海理工大学环境与建筑学院,上海 200093
2 复旦大学环境科学与工程系, 上海 200433
摘要
差分光学吸收光谱技术(DOAS)经过三十多年的发展,已经广泛用于地基、空基和卫星平台的大气痕量气体观测。 目前, DOAS技术在大气气溶胶光学厚度、消光系数、粒径分布、污染类型等监测领域得到了很大的发展,为大 气环境监测、大气化学研究提供了新的手段和方法。在分别回顾主动DOAS技术监测近地面气溶胶以及被动DOAS技 术反演垂直方向上气溶胶光学参数等研究的基础上,对DOAS技术监测气溶胶的研究领域技术发展提出新思路。
Abstract
After more than three decades’ development, the differential optical absorption spectroscopy (DOAS) method is widely used to measure the atmospheric trace gases in forms of ground based, air borne and satellite platform. Recently, the DOAS technique made great progresses in atmospheric aerosol measurement, including aerosol optical depth (AOD), extinction coefficient, size distribution and pollution type, which provides a new method for atmospheric environment monitoring and atmospheric chemistry research. Studies about the active DOAS technique to measure ground surface aerosol optical parameters and passive technique to retrieve vertical aerosol optical properties were reviewed, respectively. Afterwards, new ideas for the research on the aerosol monitoring by the DOAS technique were put forward.
参考文献

[1] Seinfeld J H, Pandis S N. Atmospheric Chemistry and Physics: from Air Pollution to Climate Change[M]. 2nd ed., New York: Wiley, 2006.

[2] Husar R B, Prospero J M, Stowe L L. Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product[J]. J. Geophys. Res., 1997, 102: 16889-16909.

[3] Herman J R, Bhartia P K, Torres O, et al. Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data[J]. J. Geophys. Res., 1997, 102: 16911-16922.

[4] Jickells T D, An Z S, Andersen K K, et al. Global iron connections between desert dust, ocean biogeochemistry, and climate[J]. Science, 2005, 308: 67-71.

[5] Cheng T T, Zhang R J, Han Z W, et al. Relationship between ground-based particle component and column aerosol optical properties in dusty days over Beijing[J]. Geophys. Res. Lett., 2008, 35: L20808.

[6] Fu Q Y, Zhuang G S, Wang J, et al. Mechanism of formation of the heaviest pollution episode ever reeorded in the Yangtze River Delta, China[J]. Atmos. Environ., 2008, 42: 2023-2036.

[7] Lin P, Hu M, Deng Z, et al. Seasonal and diurnal variations of organic carbon in PM2.5 in Beijing and the estimation of secondary organic carbon[J]. J. Geophys. Res., 2009, 114: D00G11.

[8] Xiao R, Takegawa N, Kondo Y, et al. Formation of submicron sulfate and organic aerosols in the outflow from the urban region of the Pearl River Delta in China[J]. Atmos. Environ., 2009, 43: 3754-3763.

[9] Huang R J, Zhang Y L, Bozzetti C, et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514: 218-222.

[10] Solomon S, Qin D, Manning M, et al. Climate change 2007: the physical science[R]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2007: 131-217.

[11] Huebert B J, Bates T, Russell P B, et al. An overview of ACE-Asia: strategies for quantifying the relationships between Asian aerosols and their climatic impacts[J]. J. Geophys. Res., 2003, 108: 8633.

[12] Ramanathan V, Crutzen P J. New directions: Atmospheric brown clouds[J]. Atmos. Environ., 2003, 37: 4033-4035.

[13] Andreae M O, Jones C D, Cox P M. Strong present-day aerosol cooling implies a hot future[J]. Nature, 2005, 435: 1187-1190.

[14] Mercado L M, Bellouin N, Sitch S, et al. Impact of changes in diffuse radiation on the global land carbon sink[J]. Nature, 2009, 458: 1014-1017.

[15] Platt U. Differential Optical Absorption Spectroscopy (DOAS)[C]. In M. W. Sigrist (Ed.), Air Monitoring by Spectoscopic Techniques[M]. Volume 127 of Chemical Analysis, New York. Wiley-Interscience: 1994.

[16] Platt U, Perner D, Ptz H W. Simultaneous measurements of atmospheric CH2 O, O3 and NO2 by differential optical absortion[J]. J. Geophys. Res., 1979, 84: 6329-6335.

[17] Platt U, Stutz J. Differential Optical Absorption Spectroscopy-Principles and Applications[M]. Berlin: Springer, 2008.

[18] Perner D, Ehhalt D H, Ptz H W, et al. OH radicals in the lower troposphere[J]. Geophys. Res. Lett., 1976, 3: 466-468.

[19] Axelsson H, Galle B, Gustavsson K, et al. A transmitting/receiving telescope for DOAS-measurements using retroreflector technique[C]. In: Digest of Topical Meeting on Optical Remote Sensing of the Atmosphere[A]. 1990, 4: 641-644.

[20] Ritz D, Hausmann M, Platt U. An improved open-path multireflection cell for the measurement of NO2 and NO3[C]. In: Proceedings Europto Series, Optical Methods in Atmospheric Chemistry[A]. SPIE, 1992, 1715: 200-211.

[21] Pundt I, Mettendorf K U, Laepple T, et al. Measurements of trace gas distributions using Long-path DOAS-Tomography during the motorway campaign BAB II: experimental setup and results for NO2[J]. Atmos. Environ., 2005, 39: 967-975

[22] Smith J, Solomon S. Atmospheric NO3 1990: 3. Sunrise disappearance and the stratospheric profile[J]. J. Geophys. Res., 1990, 95: 13819-13827.

[23] Sanders R W, Solomon S, Smith J P, et al. Visible and near-UV spectroscopy at McMurdo station, Antarctica, 9. Observations of OClO from April to October 1991[J]. J. Geophys. Res., 1993, 98: 7219-7228.

[24] Hnninger G, Friedeburg C V, Platt U. Multi axis differential absorption spectroscopy (MAX-DOAS)[J]. Atmos. Chem. Phys., 2004, 4: 231-254.

[25] Leigh R J, Corlett G K, Frieβ U, et al. A concurrent multi-axis differential optical absorption spectroscopy system for the measurement of tropospheric nitrogen dioxide[J]. Appl. Opt., 2006, 45: 7504-7518.

[26] Heckel A, Richter A, Tarsu T, et al. MAX-DOAS measurements of formaldehyde in the Po-Valley[J]. Atmos. Chem. Phys., 2005, 5: 909-918.

[27] Sinreich R, Volkamer R, Filsinger F, et al. MAX-DOAS detection of glyoxal during ICARTT 2004[J]. Atmos. Chem. Phys., 2007, 7: 1293-1303.

[28] Lee J S, Kim Y J. Extinction measurement using a differential optical absorption spectrometer system[J]. J. Korean Phys. Soc., 2003, 42: 731-734.

[29] Müller T, Müller D, Bubois R. Particle extinction measured at ambient conditions with differential optical absorption spectroscopy. 1. System setup and characterization[J]. Appl. Opt., 2005, 44(9): 1657-1666.

[30] Müller T, Müller D, Bubois R. Particle extinction measured at ambient conditions with differential optical absorption spectroscopy. 2. Closure study[J]. Appl. Opt., 2006, 45(10): 2295-2305.

[31] Skupin A, Ansmann A, Engelmann R, et al. The Spectral Aerosol Extinction Monitoring System (SAEMS): setup, observational products, and comparisons[J]. Atmos. Meas. Tech., 2014, 7: 701-712.

[32] 郝 楠, 周 斌, 陈立民. 利用差分吸收光谱法测量亚硝酸和反演气溶胶参数[J]. 物理学报, 2006, 55: 1529-1533.

    Hao Nan, Zhou Bin, Chen Limin. Measurement of nitrous acid and retrieval of aerosol parameters with differential optical absorption spectroscopy[J]. Acta Physica Sinica, 2006, 55: 1529-1533(in Chinese).

[33] 司福祺, 刘建国, 谢品华, 等. 差分吸收光谱技术监测大气气溶胶粒谱分布[J]. 物理学报, 2006, 55: 3165-3169.

    Si Fuqi, Liu Jianguo, Xie Pinhua, et al. Determination of size distribution of atmospheric aerosol by DOAS[J]. Acta Physica Sinica, 2006, 55: 3165-3169(in Chinese).

[34] 李素文, 司福祺, 赵 鑫. 基于光学遥感技术获取近地面气溶胶消光系数的方法研究[J]. 电子测量与仪器学报, 2009, 23: 69-73.

    Li Suwen, Si Fuqi, Zhao Xin. Retrieval method of near ground aerosol extinction coefficient based on remote sensing[J]. Journal of Electronic Measurement and Instrument, 2009, 23: 69-73(in Chinese).

[35] 司福祺, 刘建国, 谢品华, 等. 差分吸收光谱技术监测气溶胶光学厚度及大气能见度的研究[J]. 光学学报, 2006, 26: 961-964.

    Si Fuqi, Liu Jianguo, Xie Pinhua, et al. Determination of aerosol optical thickness and atmospheric visibility by differential optical absorption spectroscopy[J]. Acta Optica Sinica, 2006, 26: 961-964(in Chinese).

[36] 司福祺, 刘建国, 谢品华, 等. 差分吸收光谱技术监测气溶胶消光系数的误差分析[J]. 光谱学与光谱分析, 2006, 26: 1810-1811.

    Si Fuqi, Liu Jianguo, Xie Pinhua, et al. Determination of the error of aerosol extinction coefficient measured by DOAS[J]. Spectroscopy and Spectral Analysis, 2006, 26: 1810-1811(in Chinese).

[37] 司福祺, 谢品华, 刘建国, 等. 基于DOAS技术的气溶胶粒谱分布反演方法研究[J]. 光谱学与光谱分析, 2008, 28: 2417-2020.

    Si Fuqi, Xie Pinhua, Liu Jianguo, et al. Determination of the retrieval arithmetic of aerosol size distribution measured by DOAS[J]. Spectroscopy and Spectral Analysis, 2008, 28: 2417-2020(in Chinese).

[38] Wagner T, Dix B, Friedeburg C V, et al. MAX-DOAS O4 measurements: A new technique to derive information on atmospheric aerosols-Principles and information content[J]. J. Geophys. Res., 2004, 119: D22205.

[39] Pfeilsticker K, Erle F, Platt U. Absorption of solar radiation by atmospheric O4[J]. J. Atmos. Sci., 1997, 54: 933-939.

[40] Meena G S, Bhosale C S, Jadhav D B. Influence of tropospheric clouds on ground-based measurements of stratospheric trace gases at Tropical station, Pune[J]. Atmos. Environ., 2004, 38: 3459-3468.

[41] 王珊珊. 基于被动DOAS的上海城区NO2 和气溶胶污染的反演研究[D]. 上海: 复旦大学博士论文, 2012.

    Wang Shanshan. Study on the Retrieval of NO2 and Aerosol Pollution in Shanghai Urban Area Based on the Passive DOAS Technique[D]. Shanghai: Doctorial Dissertation of Fudan University, 2012(in Chinese).

[42] Wittrock F, Oetjen H, Richter A., et al. MAX-DOAS measurements of atmospheric trace gases in Ny-lesund-radiative transfer studies and their application[J]. Atmos. Chem. Phys., 2004, 4: 955-966.

[43] Frieβ U, Monks P S, Remedios J J, et al. MAX-DOAS O4 measurements: a new technique to derive information on atmospheric aerosols: 2. Modeling studies[J]. J. Geophys. Res., 2006, 111: D14204.

[44] Irie H, Kanaya Y, Akimoto H, et al. First retrieval of tropospheric aerosol profiles using MAX-DOAS and comparison with lidar and sky radiometer measurements[J]. Atmos. Chem. Phys., 2008, 8: 341-350.

[45] Clémer K, Van Roozendael M, Fayt C, et al. Multiple wavelength retrieval of tropospheric aerosol optical properties from MAXDOAS measurements in Beijing[J]. Atmos. Meas. Tech., 2010, 3: 863-878.

[46] Li X, Brauers T, Shao M, et al. MAX-DOAS measurements in southern China: retrieval of aerosol extinctions and validation using ground-based in-situ data[J]. Atmos. Chem. Phys., 2010, 10: 2079-2089.

[47] Lee H, Irie H, Gu M, et al. Remote sensing of tropospheric aerosol using UV MAX-DOAS during hazy conditions in winter: Utilizing of O4 absorption bands at wavelength intervals of 338-368 nm and 367-393 nm[J]. Atmos. Environ., 2011, 45: 5760-5769.

[48] Vlemmix T, Hendrick F, Pinardi G, et al. MAX-DOAS observations of aerosols, formaldehyde and nitrogen dioxide in the Beijing area: comparison of two profile retrieval approaches[J]. Atmos. Meas. Tech. Discuss., 2014, 7: 9673-9731.

[49] Baidar S, Oetjen H, Coburn S, et al. The CU Airborne MAX-DOAS instrument: vertical profiling of aerosol extinction and trace gases[J]. Atmos. Meas. Tech., 2013, 6: 719-739.

[50] 司福祺, 谢品华, 窦 科, 等. 被动多轴差分吸收光谱大气气溶胶光学厚度监测方法研究[J]. 物理学报, 2010, 59: 2867-2872.

    Si Fuqi, Xie Pinhua, Dou Ke, et al. Determination of the atmospheric aerosol optical density by multi axis differential optical absorption spectroscopy[J]. Acta Physica Sinica, 2010, 59: 2867-2872(in Chinese).

[51] 王 杨, 李 昂, 谢品华, 等. 多轴差分吸收光谱技术反演气溶胶消光系数垂直廓线[J]. 物理学报, 2013, 62: 180705.

    Wang Yang, Li Ang, Xie Pinhua, et al. Retrieving vertical profile of aerosol extinction by multi-axis differential optical absorption spectroscopy[J]. Acta Physica Sinica, 2013, 62: 180705(in Chinese).

[52] 王 杨, Wagner T, 李 昂, 等. 多轴差分吸收光谱技术的云和气溶胶类型鉴别方法研究[J]. 物理学报, 2014, 63: 110708.

    Wang Yang, Wagner T, Li Ang, et al. Research of classification of cloud and aerosol using multi-axis differential optical absorption spectroscopy[J]. Acta Physica Sinica, 2014, 63: 110708(in Chinese).

[53] Wang S S, Zhao H, Yang S N, et al. Correlation between atmospheric O4 and H2 O absorption in visible band and its implication to dust and haze events in Shanghai, China[J]. Atmos. Environ., 2012, 62: 164-171.

[54] 周海金, 刘文清, 司福祺, 等. 被动多轴差分吸收光谱技术监测O4 斜柱浓度误差修正方法研究[J]. 大气与环境光学学报, 2012, 7: 116-123.

    Zhou Haijin, Liu Wenqing, Si Fuqi, et al. O4 slant column density measurement and error correcting using multi axis differential optical absorption spectroscopy[J]. Journal of Atmospheric and Environmental Optics, 2012, 7: 116-123(in Chinese).

王珊珊, 周斌. 差分光学吸收光谱技术监测气溶胶研究进展[J]. 大气与环境光学学报, 2015, 10(2): 139. WANG Shanshan, ZHOU Bin. Progress in Aerosol Measurements Based on Differential Optical Absorption Spectroscopy Method[J]. Journal of Atmospheric and Environmental Optics, 2015, 10(2): 139.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!