红外与毫米波学报, 2019, 38 (1): 97, 网络出版: 2019-03-19   

光驱动宽频带可调谐太赫兹吸波器设计

Design of a photo-excited broadband tunable terahertz absorber
作者单位
1 武汉科技大学 信息科学与工程学院, 湖北 武汉 430081
2 华中科技大学 光学与电子信息学院, 湖北 武汉 430074
摘要
设计了一种基于光敏材料硅(Si)的宽频带极化不敏感的光驱动可调谐太赫兹超材料吸波器(metamaterial absorber, 简称MMA).该可调谐太赫兹MMA基本单元结构由嵌入光敏硅的紧凑开缝环谐振器结构、中间介质隔离层与金属底板构成.硅的电导率随着入射光的强度而发生改变, 从而使太赫兹MMA工作频率和吸波性能得到有效的调节.数值计算结果表明: 当硅电导率在1.0×103 S/m到5.0×105 S/m范围内动态调节时, 该MMA吸波特性在0442 THz到0.852 THz范围内动态调节.另外, 其相对调节带宽达到63.37%, 吸收率调制深度达到60.22%.进一步的数值计算结果表明我们所设计的MMA具备极化不敏感和宽入射角的特性.
Abstract
A photo-excited and polarization insensitive broadband tunable terahertz metamaterial absorber (MMA) based on the photo-sensitive material of silicon (Si) is proposed. The unit-cell structure of this MMA is consisting of compact split-ring resonator structure filled with silicon, mediate medium layer and metal ground-plane. The working frequency and absorption intensity of this terahertz MMA could be effectively tuned, when the conductivity of silicon was changed by the varied incident optical intensity. The simulation results demonstrate that this MMA is dynamically adjusted in the frequency range from 0.852 THz to 0.442 THz when the conductivity of silicon increases from 1.0×103 S/m to the 5.0×105 S/m. In addition, its relative bandwidth is as much as 63.37% and absorption modulation depth is up to 60.22%. The further simulation indicates that the MMA has characteristics of polarization insensitive and wide incident angle.
参考文献

[1] SHELBY R A, SMITH D R, SCHULTZ S. Experimental verification of a negative index of refraction [J]. Science, 2001, 292(5514):77-79.

[2] SHALAEV V M, CAI W S, CHETTIAR U K, et al. Negative index of refraction in optical metamaterials [J]. Optics Letters, 2005, 30(24):3356-3358.

[3] PENDRY J B, SCHURIG D, SMITH D R. Controlling electromagnetic fields [J]. Science, 2006, 312(5781): 1780-1782.

[4] GU J Q, SINGH R J, LIU X J, et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials [J]. Nature Communications, 2012, 3:1151.

[5] CHEN H T, PADILLA W J, ZIDE J M O, et al. Active terahertz metamaterial devices [J]. Nature Photonics, 2006, 444(7119):597-600.

[6] VICARELLI L, VITIELLO M S, COQUILLAT D, et al. Graphene field-effect transistors as room-temperature terahertz detectors [J]. Nature Materials, 2012, 11(10):865-871.

[7] CHEN H T, PADILLA W J, CICH M J A, et al. A metamaterial solid-state terahertz phase modulator [J]. Nature Photonics, 2009, 3(3):148-151.

[8] SHEN N H, MASSAOUTI M, GOKKAVAS M, et al. Optically Implemented Broadband Blueshift Switch in the Terahertz Regime [J]. Physical Review Letters, 2011, 106(3):037403.

[9] TAO H, LANDY N I, BINGHAM C M, et al. A metamaterial absorber for the terahertz regime: Design, fabrication and characterization [J]. Optics Express, 2008, 16(10):7181-7188.

[10] CHENG Y Z, WITHAYACHUMNAKNKUL W, UPADHYAY A, et al. Ultrabroadband plasmonic absorber for terahertz waves [J]. Advance Optical materials, 2015, 3(3):376-380.

[11] HU B B, NUSS M C. Imaging with terahertz waves [J]. Optics Letters, 1995, 20(16):1716.

[12] WANG Dong-Hong, LI Bao-Yi, ZHOU Bi-Cheng. Research on Terahertz (THz) Absorber Materials [J]. Journal of Microwaves (王东红, 李宝毅, 周必成. 太赫兹波段吸收材料研究. 微波学报), 2014, 30(3):570-573.

[13] TAUK R, TEPPE F, BOUBANGA S, et al. Plasma wave detection of terahertz radiation by silicon field effects transistors: Responsivity and noise equivalent power [J]. Applied Physics Letters, 2006, 89(25):253511.

[14] LE L N, THANG N M, THUY L M, et al. Hybrid semiconductor-dielectric metamaterial modulation for switchable bi-directional THz absorbers [J]. Optics Communications, 2017, 383:244-249.

[15] ZHU J, HAN J, TIAN Z, et al. Thermal broadband tunable terahertz metamaterials [J]. Optical Communications, 2011, 284(12):3129-3133.

[16] HEDAYATI M K, JAVAHERI M, ZILLOHU A U, et al. Photo-driven super absorber as an active metamaterial with a tunable molecular-plasmonic coupling [J]. Advanced Optical Materials, 2014, 2(8):705-710.

[17] Faraji M, MORAVVEJ-FARSHI M K, YOUSEFI L. Tunable THz perfect absorber using graphene-based metamaterials [J]. Optics Communication, 2015, 355:352-355.

[18] CHENG Wei, LI Jiu-Sheng. Design of an optically tunable terahertz wave absorber [J]. Electronic Components & Materials (程伟, 李九生. 一种光可调太赫兹波吸收器的设计. 电子元件与材料), 2013, 32(7):34-36.

[19] SHEN X P, CUI T J. Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber [J]. Journal of Optics, 2012, 14(11):114012.

[20] XU Z C, GAO R M, DING C F, et al. Photoexcited broadband blueshift tunable perfect terahertz metamaterial absorber [J]. Optical Materials, 2015, 42:148-151.

[21] CHENG Y Z, GONG R Z, CHENG Z Z. A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves [J]. Optics Communications, 2016, 361:41-46.

[22] CHENG Y Z, GONG R Z, ZHAO J C. A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves [J]. Optical Materials, 2016, 62:28-33.

[23] ZHOU J F, ECONOMON N E, KOSCHNY T, et al. Unifying approach to left-handed material design [J]. Optics Letters, 2006, 31(24):3620-3622.

[24] GHOSH S, SRIVASTAVA K V. An equivalent circuit model of FSS-Based metamaterial absorber using coupled line theory [J]. IEEE Antennas and Wireless Propagation Letters, 2015 14:511-514.

[25] OZBEY B, ALTINTAS A, DEMIR H V, et al. An equivalent circuit model for nested split-ring resonators [J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(10):3733-3.

程用志, 左轩, 黄木林, 王童年, 龚荣洲. 光驱动宽频带可调谐太赫兹吸波器设计[J]. 红外与毫米波学报, 2019, 38(1): 97. CHENG Yong-Zhi, ZUO Xuan, HUANG Mu-Lin, WANG Tong-Nian, GONG Rong-Zhou. Design of a photo-excited broadband tunable terahertz absorber[J]. Journal of Infrared and Millimeter Waves, 2019, 38(1): 97.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!