光学学报, 2007, 27 (10): 1725, 网络出版: 2007-10-24   

阵列波导光栅中心波长温度稳定性的研究

Analytical Solutions for the Temperature Stability of Central Wavelength in Arrayed Waveguide Gratings
黄华茂 1,2,*刘文 1,3黄德修 1,2
作者单位
1 武汉光电国家实验室, 武汉 430074
2 华中科技大学光电子科学与工程学院, 武汉 430074
3 武汉光迅科技有限责任公司, 武汉 430074
摘要
阵列波导光栅中心波长的温度不稳定性成为限制其应用的主要原因。为了设计温度不敏感阵列波导光栅,结合弹性多层板热应力理论和应力集中效应给出掩埋波导芯层应力的解析解,利用等效折射率法计算阵列波导的有效折射率及其温度系数,考虑波导材料折射率和波导长度随温度的变化得到了硅基二氧化硅阵列波导光栅中心波长的温度系数。并研究了贴有应力板的阵列波导光栅中心波长的温度特性,结果表明在芯片底部贴有0.37 mm厚的铝板时,TE模和TM模中心波长的温度系数分别是5.9 pm/℃和8.0 pm/℃,下降到传统阵列波导光栅中心波长温度系数的一半。
Abstract
The thermal instability is a big problem in arrayed-waveguide gratings (AWG). A general method to study the central wavelength temperature sensitivity is developed with theoretically considering thermo-optic effect, stress-optic effect, thermal expansion and stress-strain relation. By combination of elastic multilayer theory and stress concentration effect, analytical stress solutions in the core layer are obtained. Based on the results of asymmetrical anisotropy planar waveguides, the effective index and its temperature coefficient in buried channel waveguides are calculated by using the effective index method. And then, the solutions are used to estimate temperature sensitivity of AWG central wavelength. The temperature sensitivity controlled by the thermal stresses induced by attaching an aluminum plate is also discussed. The results show that the temperature sensitivity could be optimized after attaching an aluminum plate on the bottom of arrayed waveguides. For the TE mode, the temperature coefficient of central wavelength is reduced to 5.9 pm/℃, and for the TM mode, that is reduced to 8.0 pm/℃.
参考文献

[1] . Himeno, K. Kato, T. Miya. Silica-based planar lightwave circuits[J]. IEEE J. Sel. Top. Quant. Electron., 1998, 4(6): 913-924.

[2] . J. Park, C. H. Lee, K. T. Jeong et al.. Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network[J]. J. Lightwave Technol., 2004, 22(11): 2582-2591.

[3] S. Kamei, Y. Inoue, A. Kaneko et al.. Recent progress on athermal AWG wavelength multiplexer[C]. Proc. SPIE, 2005. 60140H-1~60140H-4

[4] T. Saito, K. Nara, K. Tanaka et al.. 100 GHz-32ch athermal AWG with extremely low temperature dependency of center wavelength[C]. OFC′2003, 2003, 1: 57~59

[5] Zhu Daqing, Xu Zhen′e. Study on a temperature-insensitive arrayed waveguide grating[J]. Acta Optica Sinica, 2004, 24(7): 907~911 (in Chinese)
朱大庆,许振鄂. 一种温度不敏感型阵列波导光栅的研究[J]. 光学学报, 2004, 24(7): 907~911

[6] Fu Jian. Study on a temperature-insensitive reflective arrayed waveguide grating[J]. J. Optoelectronics·Laser, 2004, 15(Suppl.): 48~51 (in Chinese)
符建. 一种具有无源温度补偿的反射型阵列波导光栅的研究[J]. 光电子·激光, 2004, 15(增刊): 48~51

[7] . Huang, X. Yan, Thermal-stress effects on the temperature sensitivity of optical waveguides[J]. J. Opt. Soc. Am. B, 2003, 20(6): 1326-1333.

[8] Li Weite, Huang Baohai, Bi Zhongbo. Theoretical Analysis of Thermal Stress and Their Applications[M]. Beijing: China Electric Power Press, 2004. 69 (in Chinese)
李维特,黄保海,毕仲波. 热应力理论分析及应用[M]. 北京: 中国电力出版社, 2004. 69

[9] . Kilian, J. Kirchhof, B. Kuhlow et al.. Birefringence free planar optical waveguide made by flame hydrolysis deposition (FHD) through tailoring of the overcladding[J]. J. Lightwave Technol., 2000, 18(2): 193-198.

[10] . . Stress anslysis of silica optical waveguide on silicon by a finite element method[J]. Chin. J. Semiconductors, 2002, 23(11): 1196-1200.

[11] Jin Yongxing, Lü Jun, Lü Xiang. Analysis of relation between thermal expansion coefficient of cladding and stress birefringence of optical waveguide[J]. Acta Optica Sinica, 2003, 23(5): 572~574 (in Chinese)
金永兴,吕俊,吕翔. 光波导覆层热膨胀系数对应力双折射影响的分析[J]. 光学学报, 2003, 23(5): 572~574

[12] . . Numerical analysis for a SiO2/Si waveguide stress-birefringence[J]. Chin. J. Semiconductors, 2005, 26(7): 1454-1458.

[13] He Zhongjiao. Analysis of stress birefringence for silica waveguide on silicon and SOI rib waveguide[J]. Acta Photonica Sinica, 2006, 35(2): 201~204 (in Chinese)
何忠蛟. 硅基二氧化硅波导和SOI脊型波导应力双折射研究[J]. 光子学报, 2006, 35(2): 201~204

[14] . H. Hsueh. Thermal stresses in elastic multilayer systems[J]. Thin Solid Films, 2002, 418(2): 182-188.

[15] . Huang. Analytical solutions for thermal stresses in buried channel waveguides[J]. IEEE J. Quant. Electron., 2004, 40(11): 1562-1568.

[16] . Huang, X. Yan. Analytical solutions to estimate the stress induced polarization shift and the temperature sensitivity of optical waveguides[J]. J. Appl. Phys., 2004, 95(5): 2820-2826.

[17] . Ooba, Y. Hibino, Y. Inoue et al.. Athermal silica-based arrayed-waveguide grating multiplexer using bimetal plate temperature compensator[J]. Electron. Lett., 2000, 36(21): 1800-1801.

黄华茂, 刘文, 黄德修. 阵列波导光栅中心波长温度稳定性的研究[J]. 光学学报, 2007, 27(10): 1725. 黄华茂, 刘文, 黄德修. Analytical Solutions for the Temperature Stability of Central Wavelength in Arrayed Waveguide Gratings[J]. Acta Optica Sinica, 2007, 27(10): 1725.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!