激光与光电子学进展, 2014, 51 (3): 030001, 网络出版: 2014-04-08   

固体激光器波前畸变自适应校正技术及研究进展 下载: 1081次

Solid-State Laser Distortion Wavefront Adaptive Correction Technology and Its Research Progress
作者单位
1 中国科学院光电研究院, 北京 100094
2 中国科学院大学, 北京 100049
摘要
自适应光学(AO)作为一种主动光学补偿技术,由于具有结构简单、校正效果好、可闭环运行等优势,被大量用于校正激光波前畸变,并于近年逐渐应用于高能激光器系统中。综述了AO 系统工作的基本原理,系统论述了近年来国内外在AO 系统校正固体激光畸变方面的研究进展。按照校正固体激光器波前畸变的AO 系统中有无采用波前传感器,将其分为无波前探测和有波前探测的AO 校正技术进行介绍,分析了各个研究工作的关键性技术。最后总结了目前存在的技术难题,并对AO 技术在固体激光器中的应用前景进行了展望。
Abstract
As an active optical compensation technology, adaptive optics (AO) is used to correct wavefront distortion extensively because of its advantages such as simplicity, instantaneity and validity. In recent years, AO technology is increasingly used in high- energy laser system. We review the basic principles of the AO system, and discuss the research progress of solid- state AO correction technology at home and aboard. Introduction to two categories is presented according to if there is a wavefront sensor in an AO system to correct the wavefront distortion in solid state lasers, and the key technologies are introduced. Finally, theexisting technical difficulties are summarized, and the application prospect is presented.
参考文献

[1] Hammer D X, Ferguson R D, Bigelow C E, et al.. Precision targeting with a tracking adaptive optics scanning laser ophthalmoscope [C]. SPIE, 2006, 6138: 613811.

[2] Wizinowich P L, Le Mignant D, Bouchez A H, et al.. The W. M. Keck Observatory laser guide star adaptive optics system: overview [J]. Publications of the Astronomical Society of the Pacific, 2006, 118(840): 297-309.

[3] Wang Hailin, Huang Weiling, Zhou Zuoyou, et al.. Experimental study of a high power and high efficiency CW diodeside-pumped Nd: YAG laser [J]. Optics & Laser Technology, 2004, 36(1): 69- 73.

[4] Yang Ping, Ning Yu, Lei Xiang, et al.. Enhancement of the beam quality of non-uniform output slab laser amplifier with a 39-actuator rectangular piezoelectric deformable mirror[J]. Opt Express, 2010, 18(7): 7121-7130.

[5] Babcock, Horace W. The possibility of compensating astronomical seeing[J]. Publications of the Astronomical Society of the Pacific, 1953, 65(386): 229-236.

[6] 姜文汉. 自适应光学技术[J]. 自然杂志, 2006, 28(1): 7-13.

    Jiang Wenhan. Adaptive optics [J]. Nature Magazine, 2006, 28(1): 7-13.

[7] 姜文汉, 黄树辅, 吴旭斌. 爬山法自适应光学波前校正系统[J]. 中国激光, 1988, 15(1): 17-21.

    Jiang Wenhan, Huang Shufu, Wu Xubin. Hill climbing wavefront correcting system [J]. Chinese J Lasers, 1988, 15(1): 17-21.

[8] Jiang Wenhan, Huang Shufu, Ling Ning, et al.. Hill climbing wavefront correcting system for large laser engineering [C]. SPIE, 1988, 965: 266-272.

[9] J T Salmon, E S Bliss, T W Long, et al.. Real-time wavefront correction system using a zonal deformable mirror and a Hartmann sensor [C]. SPIE, 1991, 1542: 459-467.

[10] A V Kudryashov, V V Samarkin. Control of high power CO2 laser beam by adaptive optical elements [J]. Opt Commun, 1995, 118(3): 317-322.

[11] U Greiner, H Klingenberg. Thermal lens correction of a diode- pumped Nd:YAG laser of high TEM00 power by an adjustable-curvature mirror [J]. Opt Lett, 1994, 19(16): 1207-1209.

[12] T Y Cherezova, L N Kaptsov, A V Kudryashov. Cw industrial rod YAG: Nd3 + laser with an intracavity active bimorph mirror [J]. Appl Opt, 1996, 35(15): 2554-2561.

[13] F Druon, G Chériaux, J Faure, et al.. Wave-front correction of femtosecond terawatt lasers by deformable mirrors [J]. Opt Lett, 1998, 23(13): 1043-1045.

[14] M R Armstrong, P Plachta, E A Ponomarev, et al.. Versatile 7-fs optical parametric pulse generation and compression by use of adaptive optics [J]. Opt Lett, 2001, 26(15): 1152-1154.

[15] J W Hardy. Adaptive Optics for Astronomical Telescopes [M]. Oxford: Oxford University Press, 1998.

[16] 姜文汉. 现代仪器仪表技术与设计[M]. 北京: 科学出版社, 2003. 1049-1114.

    Jiang Wenhan. Modern Instrumentation Technology and Design [M]. Beijing: Science Press, 2003. 1049-1114.

[17] 姜文汉, 鲜浩, 杨泽平, 等. 哈特曼波前传感器的应用[J]. 量子电子学报, 1998, 15(2): 228-235.

    Jiang Wenhan, Xian Hao, Yang Zeping, et al.. Applications of Shack- Hartmann wavefront sensor [J]. Chinese J Quantum Electronics, 1998, 15(2): 228-235.

[18] 林旭东, 薛陈, 刘欣悦, 等. 自适应光学波前校正器技术发展现状[J]. 中国光学, 2012, 5(4): 337-350.

    Lin Xudong, Xue Chen, Liu Xinyue, et al.. Current status and research development ofwavefront correctors for adaptive optics [J]. Chinese Optics, 2012, 5(4): 337-350.

[19] 王三宏. 随机并行梯度下降自适应光学技术在光束净化中的应用[D]. 长沙:国防科学技术大学, 2009. 5~6.

    Wang Sanhong. Application of Stochastic- Parrallel- Gradient- Descent Adaptive Optics Techniques in Beam Cleanup [D]. Changsha: National University of Defense Technology, 2009. 5-6.

[20] Vorontsov M A, Carhart G W, Ricklin J C. Adaptive phase- distortion correction based on parallel gradient- descent optimization [J]. Opt Lett, 1997, 22(12): 907-909.

[21] Carhart G W, Ricklin J C, Sivokon V P, et al.. Parallel perturbation gradient descent algorithm for adaptive wavefront correction [C]. SPIE, 1997, 3126: 221-227.

[22] Polejaev V I, Vorontsov M A. Adaptive active imaging system based on radiation focusing for extended targets [C]. SPIE, 1997, 3126: 216-220.

[23] M A Voront sov, V P Sivokon. Stochastic parallel gradient descent technique for high- resolution wave- front phasedistortion correction [J]. J Opt Soc Am A, 1998, 15(10): 2745-2758.

[24] M A Voront sov, G W Carhart, M Cohen, et al.. Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration [J]. J Opt Soc Am A, 2000, 17(8): 1440-1453.

[25] M A Voront sov. Decoupled stochastic parallel gradient descent optimization for adaptive optics: integrated approach for wavefront sensor in formation fusion [J]. J Opt Soc Am A, 2002, 19(2): 356- 368.

[26] T Wey rauch, M A Voront sov. Dynamic wave- front distortion compensation with a 134- control channel submillisecond adaptive system [J]. Opt Lett, 2002, 27(9): 751-753.

[27] M Yu, M A Voront sov. Bandwidth estimation for adaptive optical systems based on stochastic parallel gradient descent optimization [C]. SPIE, 2004, 5553: 189-199.

[28] 谭佐军, 陈海清, 康竞然, 等. MEMS 微变形反射镜校正波前静态畸变实验[J]. 红外与激光工程, 2008, 37(6): 1070-1073.

    Tan Zuojun, Chen Haiqing, Kang Jingran, et al.. Experiment on correction ability to the static wavefront aberration of MEMS-DMs [J]. Infrared and Laser Engineering, 2008, 37(6): 1070-1073.

[29] R H Freeman, R J Freiberg, H R Garcia. Adaptive laser resonator [J]. Opt Lett, 1978, 2(3): 61- 63.

[30] R R Stephens, R C Lind. Experimental study of an adaptive-laser resonator [J]. Opt Lett, 1978, 3(3): 79-81.

[31] C Harney. Active laser resonator control techniques [J]. Appl Opt, 1978, 17(11): 1671-1672.

[32] 姜文汉, 张雨东, 饶长辉, 等. 中国科学院光电技术研究所的自适应光学研究进展[J]. 光学学报, 2011, 31(9): 0900106.

    Jiang Wenhan, Zhang Yudong, Rao Changhui, et al.. Progress on adaptive optics of institute of optics and electronics, chinese academy of sciences [J]. Acta Optica Sinica, 2011, 31(9): 0900106.

[33] N Kugler, S Seidel, H Weber. High-power Nd:YAG laser with birefringence compensation and adaptive HR-mirror [J]. Laser Physics, 1999, 9(1): 299-303.

[34] M Gerber, A V Kudryashov, T Graf. Intracavity beam shaping of a Nd:YAG laser [C]. SPIE, 2002, 4629: 58-66.

[35] 王三宏, 梁永辉, 马浩统, 等. 随机并行梯度下降自适应光学对主振荡功率放大器激光系统的光束净化实验[J]. 中国激光, 2009, 36(10): 2763-2768

    Wang Sanhong, Liang Yonghui, Ma Haotong, et al.. Beam cleanup experiments for master oscillator power amplifier laser system by adaptive optics based on stochastic parallel gradient descent algorithm [J]. Chinese J Lasers, 2009, 36(10): 2763-2768.

[36] 杨慧珍, 李新阳, 姜文汉. 自适应光学系统随机并行梯度下降控制算法仿真与分析[J]. 光学学报, 2007, 27(8): 1355-1360.

    Yang Huizhen, Li Xinyang, Jang Wenhan. Simulation and analysis of stochastic parallel gradient descent control algorithm for adaptive optics system [J]. Acta Optica Sinica, 2007, 27(8): 1355- 1360.

[37] 杨慧珍, 李新阳, 姜文汉. 自适应光学系统几种随机并行优化控制算法比较[J]. 强激光与粒子束, 2008, 20(1): 11-16.

    Yang Huizhen, Li Xinyang, Jiang Wenhan. Comparison of several stochastic paral lel optimization control algorithms for adaptive optics system [J]. High Power Laser and Paticle Beams, 2008, 20(1): 11-16.

[38] 杨慧珍, 陈波, 李新阳, 等. 自适应光学系统随机并行梯度下降控制算法实验研究[J]. 光学学报, 2008, 28(2): 205-210.

    Yang Huizhen, Chen Bo, Li Xinyang, et al.. Experimental demonstration of stochastic parallel gradient descent control algorithm for adaptive optics system[J]. Acta Optica Sinica, 2008, 28(2): 205-210.

[39] 张金宝, 陈波, 王彩霞, 等. 61 单元自适应光学系统随机并行梯度下降算法动态实验研究[J]. 中国激光, 2010, 37(3): 668-674.

    Zhang Jinbao, Chen Bo, Wang Caixia, et al.. Dynamical wave- front distortion correction experiment based on stochastic parallel gradient descent algorithm for 61-element adaptive optics system [J]. Chinese J Lasers, 2010, 37(3): 668-674.

[40] Xiang Lei, Bing Xu, Ping Yang, et al.. Beam cleanup of a 532- nm pulsed solid- state laser using a bimorph mirror [J]. Chin Opt Lett, 2012, 10(2): 021401.

[41] R A Zacharias, N R Beer, E S Bliss, et al.. National Ignition Facility alignment and wavefront control [C]. SPIE, 2004, 5341: 168-179.

[42] K Akaoka, S Harayama, K Tei, et al.. Close loop wavefront correction of Ti:sapphire chirped pulse amplification laser beam [C]. SPIE, 1998, 3265: 219-225.

[43] S-W Bahk, P Rousseau, T Planchon, et al.. Generation and characterization of the highest laser intensities (1022 W/cm2) [J]. Opt Lett, 2004, 29(24): 2837-2839.

[44] L M Flath, J R An, J M Brase, et al.. Real-time control system for adaptive resonator [C]. SPIE, 2000, 4118: 119-125.

[45] K N LaFortune, R L Hurd, E M Johansson, et al.. Intracavity adaptive correction of a 10- kW solid state heat- capacity laser [C]. SPIE, 2004, 5333: 53-61.

[46] H Baumhacker, G Pretzler, K Witte, et al.. Correction of strong phase and amplitude modulations by two deformable mirrors in a multistaged Ti:sapphire laser [J]. Opt Lett, 2002, 27(17): 1570-1572.

[47] S Ito, H Ishikawa, T Miura, et al.. Seven- terawatt Ti:sapphire laser system operating at 50 Hz with high beam quality for laser Compton femtosecond X-ray generation [J]. Appl Phys B, 2003, 76(5): 497-503.

[48] J Zou, B Wattellier, J Fuchs, et al.. High focusability performance obtained on the LULI 100TW laser facility by use of a dielectric coated deformable mirror [C]. SPIE, 2004, 5333: 37-44.

[49] S Fourmaux, S Payeur, A Alexandrov, et al.. Laser beam wavefront correction for ultra high intensities with the 200 TW laser system at the advanced laser light source [J]. Opt Express, 2008, 16(16): 11987-11994.

[50] 杨振刚, 陈海清, 李捷, 等. 内腔自适应光学系统校正激光器畸变[J]. 光学学报, 2007, 27(12): 2205-2208.

    Yang Zhengang, Chen Haiqing, Li Jie, et al.. Lasers aberration compensation using an intra- cavity adaptive [J]. Acta Optica Sinica, 2007, 27(12): 2205-2208.

[51] 谢娜, 王晓东, 胡东霞, 等. 超短脉冲激光装置波前校正实验研究[J]. 强激光与粒子束, 2010, 22(7): 1433-1435.

    Xie Na, Wang Xiaodong, Hu Dongxia, et al.. Experimental study on wavefront correction in ultra-short laser facility [J]. High Power Laser and Paticle Beams, 2010, 22(7): 1433-1435.

[52] Ren Zhijun, Liang Xiaoyan, Yu Hongliang, et al.. Efficient spherical wavefront correction near the focus for the 0.89 PW/29.0 fs Ti:sapphire laser beam [J]. Chin Phys Lett, 28(2): 024201.

[53] 向汝建, 何忠武, 徐宏来, 等. 固体板条MOPA 激光光束质量主动控制[J]. 强激光与粒子束, 2013, 25(2): 358-362.

    Xiang Rujian, He Zhongwu, Xu Honglai, et al.. Closed- loop beam quality control fro MOPA solid slab laser [J]. High Power Laser and Paticle Beams, 2013, 25(2): 358-362.

郭广妍, 樊仲维, 余锦, 葛文琦, 康治军, 唐熊忻, 貊泽强, 王昊成, 王治昊. 固体激光器波前畸变自适应校正技术及研究进展[J]. 激光与光电子学进展, 2014, 51(3): 030001. Guo Guangyan, Fan Zhongwei, Yu Jin, Ge Wenqi, Kang Zhijun, Tang Xiongxin, Mo Zeqiang, Wang Haocheng, Wang Zhihao. Solid-State Laser Distortion Wavefront Adaptive Correction Technology and Its Research Progress[J]. Laser & Optoelectronics Progress, 2014, 51(3): 030001.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!