激光与光电子学进展, 2019, 56 (23): 230001, 网络出版: 2019-11-27   

自组装胶体晶体在微纳光学领域的研究进展 下载: 2021次封面文章

Self-Assembled Colloidal Crystals in Field of Micro-Nano Optics
作者单位
1 西北工业大学工业工程系, 陕西 西安 710072
2 西北工业大学空天微纳系统教育部重点实验室, 陕西 西安 710072
3 西北工业大学陕西省微纳机电系统重点实验室, 陕西 西安 710072
4 西北工业大学环境工程系, 陕西 西安 710072
5 西北工业大学材料科学与工程系, 陕西 西安 710072
6 西北工业大学复合材料系, 陕西 西安 710072
引用该论文

谢洪洋, 余晓畅, 高麒淦, 苏扬, 孙梓翔, 虞益挺. 自组装胶体晶体在微纳光学领域的研究进展[J]. 激光与光电子学进展, 2019, 56(23): 230001.

Hongyang Xie, Xiaochang Yu, Qigan Gao, Yang Su, Zixiang Sun, Yiting Yu. Self-Assembled Colloidal Crystals in Field of Micro-Nano Optics[J]. Laser & Optoelectronics Progress, 2019, 56(23): 230001.

参考文献

[1] Cong H L, Yu B, Tang J G, et al. Current status and future developments in preparation and application of colloidal crystals[J]. Chemical Society Reviews, 2013, 42(19): 7774-7800.

[2] Lotito V, Zambelli T. Approaches to self-assembly of colloidal monolayers: a guide for nanotechnologists[J]. Advances in Colloid and Interface Science, 2017, 246: 217-274.

[3] Dumanli A G, Savin T. Recent advances in the biomimicry of structural colours[J]. Chemical Society Reviews, 2016, 45(24): 6698-6724.

[4] Zheng H B, Ravaine S. Bottom-up assembly and applications of photonic materials[J]. Crystals, 2016, 6(5): 54.

[5] Shrestha V R, Lee S S, Kim E S, et al. Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array[J]. Nano Letters, 2014, 14(11): 6672-6678.

[6] Sun C H, Min W L, Linn N C, et al. Templated fabrication of large area subwavelength antireflection gratings on silicon[J]. Applied Physics Letters, 2007, 91(23): 231105.

[7] Fu M, Zhou J, Xiao Q, et al. ZnO nanosheets with ordered pore periodicity via colloidal crystal template assisted electrochemical deposition[J]. Advanced Materials, 2006, 18(8): 1001-1004.

[8] Zhang J T, Smith N, Asher S A. Two-dimensional photonic crystal surfactant detection[J]. Analytical Chemistry, 2012, 84(15): 6416-6420.

[9] Mathger L M. Rapid colour changes in multilayer reflecting stripes in the paradise whiptail, Pentapodus paradiseus[J]. Journal of Experimental Biology, 2003, 206(20): 3607-3613.

[10] Rassart M, Colomer J F, Tabarrant T, et al. Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules[J]. New Journal of Physics, 2008, 10(3): 033014.

[11] Wang M Q, Wang X G. Electrodeposition zinc-oxide inverse opal and its application in hybrid photovoltaics[J]. Solar Energy Materials and Solar Cells, 2008, 92(3): 357-362.

[12] Liu C Y, Long Y, Yang B Q, et al. Facile fabrication of micro-grooves based photonic crystals towards anisotropic angle-independent structural colors and polarized multiple reflections[J]. Science Bulletin, 2017, 62(13): 938-942.

[13] Zhang Y Z, Wang J X, Zhao Y, et al. Photonic crystal concentrator for efficient output of dye-sensitized solar cells[J]. Journal of Materials Chemistry, 2008, 18(23): 2650-2652.

[14] Ramiro-ManzanoF, AtienzarP, RodriguezI, et al. Apollony photonic sponge based photoelectrochemical solar cells[J]. Chemical Communications, 2007( 3): 242- 244.

[15] Nichols J E, Cortiella J, Lee J, et al. In vitro analog of human bone marrow from 3D scaffolds with biomimetic inverted colloidal crystal geometry[J]. Biomaterials, 2009, 30(6): 1071-1079.

[16] Hoi S K, Chen X, Kumar V S, et al. A microfluidic chip with integrated colloidal crystal for online optical analysis[J]. Advanced Functional Materials, 2011, 21(15): 2847-2853.

[17] Lu G, Farha O K, Kreno L E, et al. Fabrication of metal-organic framework-containing silica-colloidal crystals for vapor sensing[J]. Advanced Materials, 2011, 23(38): 4449-4452.

[18] Honda M, Kataoka K, Seki T, et al. Confined stimuli-responsive polymer gel in inverse opal polymer membrane for colorimetric glucose sensor[J]. Langmuir, 2009, 25(14): 8349-8356.

[19] Dolganova I N, Chernomyrdin N V, Aleksandrova P V, et al. Nanoparticle-enabled experimentally trained wavelet-domain denoising method for optical coherence tomography[J]. Journal of Biomedical Optics, 2018, 23(9): 091406.

[20] Mahmood R, Mettry A, Hillier A C. Templating colloidal crystal growth using chirped surface relief gratings[J]. Langmuir, 2018, 34(30): 8828-8838.

[21] Braun P V, Wiltzius P. Macroporous materials: electrochemically grown photonic crystals[J]. Current Opinion in Colloid & Interface Science, 2002, 7(1/2): 116-123.

[22] Rogach A L, Kotov N A, Koktysh D S, et al. Electrophoretic deposition of latex-based 3D colloidal photonic crystals: a technique for rapid production of high-quality opals[J]. Chemistry of Materials, 2000, 12(9): 2721-2726.

[23] Chen J, Dong P T, Di D, et al. Controllable fabrication of 2D colloidal-crystal films with polystyrene nanospheres of various diameters by spin-coating[J]. Applied Surface Science, 2013, 270: 6-15.

[24] He Y, Zhu B, Zeng X C, et al. Fabrication of large-area, close-packed, monolayer colloidal crystals via a hybrid method of spin coating and peeling-draining[J]. Thin Solid Films, 2017, 639: 98-106.

[25] Wu Y Z, Chen C, Liu Y X, et al. Fast fabrication of a self-cleaning coating constructed with scallion-like ZnO using a perfect colloidal monolayer enabled by a predictive self-assembly method[J]. Journal of Materials Chemistry A, 2017, 5(12): 5943-5951.

[26] Luo C L, Yang R X, Yan W G, et al. Rapid fabrication of large area binary polystyrene colloidal crystals[J]. Superlattices and Microstructures, 2016, 95: 33-37.

[27] Cao X H, Yin Z Y, Zhang H. Three-dimensional graphene materials: preparation, structures and application in supercapacitors[J]. Energy & Environmental Science, 2014, 7(6): 1850-1865.

[28] Zhao Y J, Xie Z Y, Gu H C, et al. Bio-inspired variable structural color materials[J]. Chemical Society Reviews, 2012, 41(8): 3297-3317.

[29] 王嘉星, 范庆斌, 张辉, 等. 表面等离激元结构色研究进展[J]. 光电工程, 2017, 44(1): 23-33, 123.

    Wang J X, Fan Q B, Zhang H, et al. Research progress in plasmonic structural colors[J]. Opto-Electronic Engineering, 2017, 44(1): 23-33, 123.

[30] Ding F, Yang Y Q, Deshpande R A, et al. A review of gap-surface plasmon metasurfaces: fundamentals and applications[J]. Nanophotonics, 2018, 7(6): 1129-1156.

[31] Ellenbogen T, Seo K, Crozier K B. Chromatic plasmonic polarizers for active visible color filtering and polarimetry[J]. Nano Letters, 2012, 12(2): 1026-1031.

[32] Nho H W, Yoon T H. Structural colour of unary and binary colloidal crystals probed by scanning transmission X-ray microscopy and optical microscopy[J]. Scientific Reports, 2017, 7: 12424.

[33] Wang L C. Ng R J H, Dinachali S S, et al. Large area plasmonic color palettes with expanded gamut using colloidal self-assembly[J]. ACS Photonics, 2016, 3(4): 627-633.

[34] Park C, Koh K, Jeong U. Structural color painting by rubbing particle powder[J]. Scientific Reports, 2015, 5: 8340.

[35] Zhang L J, Xiong Z, Shan L, et al. Layer-by-layer approach to (2+1)D photonic crystal superlattice with enhanced crystalline integrity[J]. Small, 2015, 11(37): 4910-4921.

[36] Nam H, Song K, Ha D, et al. Inkjet printing based mono-layered photonic crystal patterning for anti-counterfeiting structural colors[J]. Scientific Reports, 2016, 6: 30885.

[37] Lee S Y, Kim H, Kim S H, et al. Uniform coating of self-assembled noniridescent colloidal nanostructures using the Marangoni effect and polymers[J]. Physical Review Applied, 2018, 10(5): 054003.

[38] Jiang H, Sheida A L, Shahbazbegian H, et al. Molding inkjetted silver on nanostructured surfaces for high-throughput structural color printing[J]. ACS Nano, 2016, 10(11): 10544-10554.

[39] Umh H N, Yu S, Kim Y H, et al. Tuning the structural color of a 2D photonic crystal using a bowl-like nanostructure[J]. ACS Applied Materials & Interfaces, 2016, 8(24): 15802-15808.

[40] Meng Z P, Wu S L, Tang B T, et al. Structurally colored polymer films with narrow stop band, high angle-dependence and good mechanical robustness for trademark anti-counterfeiting[J]. Nanoscale, 2018, 10(30): 14755-14762.

[41] Bai L, Mai V C, Lim Y, et al. Large-scale noniridescent structural color printing enabled by infiltration-driven nonequilibrium colloidal assembly[J]. Advanced Materials, 2018, 30(9): 1705667.

[42] Wu S L, Liu B Q, Su X, et al. Structural color patterns on paper fabricated by inkjet printer and their application in anticounterfeiting[J]. The Journal of Physical Chemistry Letters, 2017, 8(13): 2835-2841.

[43] Lee H S, Shim T S, Hwang H, et al. Colloidal photonic crystals toward structural color palettes for security materials[J]. Chemistry of Materials, 2013, 25(13): 2684-2690.

[44] Keller K, Yakovlev A V, Grachova E V, et al. Inkjet printing of multicolor daylight visible opal holography[J]. Advanced Functional Materials, 2018, 28(21): 1706903.

[45] Stelling C, Bernhardt C, Retsch M. Subwavelength etched colloidal monolayers: a model system for tunable antireflective coatings[J]. Macromolecular Chemistry and Physics, 2015, 216(16): 1682-1688.

[46] Bouabdellaoui M, Checcucci S, Wood T, et al. Self-assembled antireflection coatings for light trapping based on SiGe random metasurfaces[J]. Physical Review Materials, 2018, 2(3): 035203.

[47] Sanchez-Sobrado O, Mendes M J, Haque S, et al. Colloidal-lithographed TiO2 photonic nanostructures for solar cell light trapping[J]. Journal of Materials Chemistry C, 2017, 5(27): 6852-6861.

[48] Zhou L, Tan Y L, Ji D X, et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation[J]. Science Advances, 2016, 2(4): e1501227.

[49] Wang B M, Gao T C, Leu P W. Broadband light absorption enhancement in ultrathin film crystalline silicon solar cells with high index of refraction nanosphere arrays[J]. Nano Energy, 2016, 19: 471-475.

[50] 沈晓霞, 蔡履中, 董国艳, 等. 光子晶体LED结构优化设计对光提取效率的影响[J]. 中国激光, 2014, 41(s1): s106006.

    Shen X X, Cai L Z, Dong G Y, et al. Impact of structure design of photonic crystals on LED light extraction efficiency[J]. Chinese Journal of Lasers, 2014, 41(s1): s106006.

[51] Li X H, Zhu P F, Liu G Y, et al. Light extraction efficiency enhancement of III-nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere arrays[J]. Journal of Display Technology, 2013, 9(5): 324-332.

[52] Li J Z, Abolghasemi L E, Herman P R, et al. Fabry-Perot etalons using colloidal photonic crystal mirrors[J]. Optics Letters, 2006, 31(24): 3591-3593.

[53] Zhao F, Zhu M W, Zhan P. Microlens arrays prepared via colloidal microsphere templating[J]. Chinese Optics Letters, 2010, 8(5): 508-511.

[54] 王飞, 王迎威, 符力平, 等. 有序金纳米颗粒阵列的制备及其吸光特性[J]. 光学学报, 2013, 33(s2): s216002.

    Wang F, Wang Y W, Fu L P, et al. Preparation and absorption characteristics of highly ordered Au nanoparticle array[J]. Acta Optica Sinica, 2013, 33(s2): s216002.

[55] Wang P, Yu X C, Zhu Y C, et al. Batch fabrication of broadband metallic planar microlenses and their arrays combining nanosphere self-assembly with conventional photolithography[J]. Nanoscale Research Letters, 2017, 12(1): 388.

[56] Furumi S, Fudouzi H, Miyazaki H T, et al. Flexible polymer colloidal-crystal lasers with a light-emitting planar defect[J]. Advanced Materials, 2007, 19(16): 2067-2072.

[57] Wang M, Zou C, Sun J, et al. Asymmetric tunable photonic bandgaps in self-organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity[J]. Advanced Functional Materials, 2017, 27(46): 1702261.

[58] Kashiri M, Asgari A. Modeling of carrier dynamics in InGaAs/GaAs self-assembled quantum dot lasers[J]. Applied Optics, 2016, 55(8): 2042-2048.

[59] 马诗章, 冯文林, 彭志清, 等. 基于氧化铜/聚苯胺包覆光子晶体光纤的一氧化碳传感器[J]. 激光与光电子学进展, 2019, 56(5): 050603.

    Ma S Z, Feng W L, Peng Z Q, et al. Carbon monoxide gas sensor based on CuO/PANI coated photonic crystal fiber[J]. Laser & Optoelectronics Progress, 2019, 56(5): 050603.

[60] 董子豪, 刘晔, 秦琰琰, 等. 激光诱导液面自组装法制备光纤SERS探针及其农药残留检测应用[J]. 中国激光, 2018, 45(8): 0804009.

    Dong Z H, Liu Y, Qin Y Y, et al. Fabrication of fiber SERS probes by laser-induced self-assembly method in a meniscus and its applications in trace detection of pesticide residues[J]. Chinese Journal of Lasers, 2018, 45(8): 0804009.

[61] 李佳欢, 裴丽, 王建帅, 等. 基于光子晶体光纤表面等离子体共振的温度和磁场双参量传感器[J]. 中国激光, 2019, 46(2): 0210002.

    Li J H, Pei L, Wang J S, et al. Temperature and magnetic field sensor based on photonic crystal fiber and surface plasmon resonance[J]. Chinese Journal of Lasers, 2019, 46(2): 0210002.

[62] 潘超, 周俊萍, 倪海彬. 胶体光子晶体修饰光纤及相对湿度检测应用[J]. 光电工程, 2018, 45(9): 180168.

    Pan C, Zhou J P, Ni H B. Colloidal photonic crystal modified optical fiber and relative humidity detection application[J]. Opto-Electronic Engineering, 2018, 45(9): 180168.

[63] 童凯, 党鹏, 汪梅婷, 等. 采用TiO2薄膜增强光子晶体光纤表面等离子体共振生物传感器灵敏度的建模分析[J]. 中国激光, 2018, 45(6): 0610002.

    Tong K, Dang P, Wang M T, et al. Enhancement of sensitivity of photonic crystal fiber surface plasmon resonance biosensor using TiO2 film[J]. Chinese Journal of Lasers, 2018, 45(6): 0610002.

[64] Yu X D, Shi L, Han D Z, et al. High quality factor metallodielectric hybrid plasmonic-photonic crystals[J]. Advanced Functional Materials, 2010, 20(12): 1910-1916.

[65] Narasimhan V, Siddique R H, Lee J O, et al. Multifunctional biophotonic nanostructures inspired by the longtail glasswing butterfly for medical devices[J]. Nature Nanotechnology, 2018, 13(6): 512-519.

[66] Zhou H W, Liu J S, Liu H T, et al. Compact dual-fiber surface-enhanced Raman scattering sensor with monolayer gold nanoparticles self-assembled on optical fiber[J]. Applied Optics, 2018, 57(27): 7931-7937.

[67] Sadegh N, Khadem H, Tavassoli S H. High Raman-to-fluorescence ratio of Rhodamine 6G excited with 532 nm laser wavelength using a closely packed, self-assembled monolayer of silver nanoparticles[J]. Applied Optics, 2016, 55(22): 6125-6129.

[68] Yuan Y, Abuhaimed G N, Liu Q K, et al. Self-assembled nematic colloidal motors powered by light[J]. Nature Communications, 2018, 9: 5040.

谢洪洋, 余晓畅, 高麒淦, 苏扬, 孙梓翔, 虞益挺. 自组装胶体晶体在微纳光学领域的研究进展[J]. 激光与光电子学进展, 2019, 56(23): 230001. Hongyang Xie, Xiaochang Yu, Qigan Gao, Yang Su, Zixiang Sun, Yiting Yu. Self-Assembled Colloidal Crystals in Field of Micro-Nano Optics[J]. Laser & Optoelectronics Progress, 2019, 56(23): 230001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!