中国激光, 2012, 39 (8): 0802006, 网络出版: 2012-07-17   

光纤放大器中有限增益带宽对自相似脉冲放大演化的数值研究

Influences of Finite Gain Bandwidth on Evolution of Self-Similar Pulse Propagation in Fiber Amplifiers
作者单位
中国科学院安徽光学精密机械研究所, 安徽省光子器件与材料重点实验室, 安徽 合肥 230031
摘要
通过求解包含超高斯增益系数滤波项的分布增益非线性薛定谔方程,模拟研究了短脉冲在有限增益带宽指数增益光纤放大器中的自相似演化行为及其差异。结果表明脉冲在不同指数增益分布放大器中传输时都会受到增益带宽的限制。相同输入脉冲在相同长度、相同总增益的指数上升、下降和双向分布放大器中放大时,在双向分布放大器中输出能量最高,输出脉冲线性啁啾特性最好,指数下降放大器输出能量最低,输出脉冲线性啁啾特性最差,指数上升放大器居两者之间。另外,总增益相同时,无论是指数上升、下降和双向分布放大器,初始增益系数较小,输出脉冲能量较高,脉冲线性啁啾特性较好。
Abstract
The evolutions of the pulse propagation in gain distributed fiber amplifiers with a finite gain bandwidth are investigated with the simulation of the nonlinear Schrdinger equation. The results show that the parabolic pulse propagations in different gain amplifiers are restricted by the finite gain bandwidth. With the same input pulse and amplifier length and overall gain, the largest energy and best linear chirp output pulse can be obtained from the bidirectional gain distributed fiber amplifier. The smallest and worst linear chirp pulse output can be obtained from decreasing gain distributed fiber amplifier, while pulse obtained from decreasing gain distributed fiber amplifier is between them. Moreover, by choosing smaller initial gain coefficient, the whole gain limited by the gain bandwidth may be larger, linear chirp is better with the same overall gain.
参考文献

[1] C. B. Schaffer, A. Brodeur, J. F. García et al.. Micromachining bulkglass by use of femtosecond laser pulses with nanojoule energy[J]. Opt. Lett., 2001, 26(2): 93~95

[2] Yanmei Wang, Huan Shen, Linqiang Hua et al.. Predissociation dynamics of the B state of CH3I by femtosecond pump-probe technique[J]. Opt. Express, 2009, 17(13): 10506~10513

[3] F. Korte, S. Adams, A. Egbert et al.. Sub-diffraction limited structuring of solid targets with femtosecond laser pulses[J]. Opt. Express, 2000, 7(2): 41~49

[4] Z. Y. Wei, Z. H. Wang, P. Wang et al.. A compact 355 TW femtosecod Tisapphire laser facility and trend to high contrast ratio[J]. J. Phys.: Conf. Ser., 2008, 112(3): 032003

[5] B. Ortac, A. Hideur, T. Chartie et al.. 90-fs stretched-pulse ytterbium-doped double-clad fiber laser[J]. Opt. Lett., 2003, 28(15): 1305~1307

[6] Xueming Liu. Pulse evolution without wave breaking in a strongly dissipative-dispersive laser system[J]. Phys. Rev. A, 2010, 81(5): 053819

[7] Xueming Liu. Dissipative soliton evolution in ultra-large normal-cavity-dispersion fiber lasers[J]. Opt. Express, 2009, 17(12): 9549~9557

[8] 赵羽, 赵德双, 刘永智 等. 被动锁模光纤激光器的耦合输出比[J]. 中国激光, 2009, 36(4): 794~798

    Zhao Yu, Zhao Deshuang, Liu Yongzhi et al.. Output coupling ratio in passively mode-locked fiber laser[J]. Chinese J. Lasers, 2009, 36(4): 794~798

[9] 任芳, 向望华, 白扬博 等. 非线性偏振旋转锁模光纤激光器的实验研究[J]. 中国激光, 2009, 36(s1): 56~60

    Ren Fang, Xiang Wanghua, Bai Yangbo et al.. Experimental study on the nonlinear polarization rotation mode-locking fiber laser[J]. Chinese J. Lasers, 2009, 36(s1): 56~60

[10] 宋方, 徐文成, 陈伟成 等. 78 fs被动锁模掺Er3+光纤激光器[J]. 中国激光, 2007, 34(9): 1174~1177

    Song Fang, Xu Wencheng, Chen Weicheng et al.. 78 fs passively mode-locked Er3+-doped fiber ring laser[J]. Chinese J. Lasers, 2007, 34(9): 1174~1177

[11] 张欣, 陈伟, 刘宇 等. 单纵模多环形腔掺铒光纤激光器及其稳定性[J]. 中国激光, 2007, 34(1): 50~54

    Zhang Xin, Chen Wei, Liu Yu et al.. Single longitudinal mode fiber laser with multiple ring cavities and its frequency stabilization[J]. Chinese J. Lasers, 2007, 34(1): 50~54

[12] J. M. Dudler, C. Fino, D. J. Richard et al.. Self-similarity in ultrafast nonlinear optics[J]. Nature Physics, 2007, 3: 597~603

[13] D. Anderson, M. Desaix, M. Karlsson et al.. Wave-breaking-free pulses in nonlinear-optical fibers[J]. J. Opt. Soc. Am. B., 1993, 10(7): 1185~1190

[14] S. Haghgoo, S. A. Ponomarenko. Self-similar pulses in coherent linear amplifiers[J]. Opt. Express, 2011, 19(10): 9750~9758

[15] J. Y. Zhang, Q Tian, Y. Y. Wang et al.. Self-similar optical pulses in competing cubic-quintic nonlinear media with distributed coefficients[J]. Phys. Rev. A, 2010, 81(2): 023832

[16] W. H. Renninger, A. Chong, F. W. Wise. Self-similar pulse evolution in an all-normal-dispersion laser[J]. Phys. Rev. A, 2010, 82(2): 021805

[17] C. K. Nielsen, B. Ortac, T. Schreiber et al.. Self-starting self-similar all-polarization maintaining Yb-doped fiber laser[J]. Opt. Express, 2005, 13(23): 9347~9351

[18] K. Tamura, M. Nakazawa. Pulse compression by nonlinear pulse evolution with reduced optical wave breaking in erbium-doped fiber amplifiers[J]. Opt. Lett., 1996, 21(1): 68~70

[19] M. E. Fermann, V. I. Kruglov, B. C. Thomsen et al.. Self-similar propagation and amplification of parabolic pulses in optical fibers[J]. Phys. Rev. Lett., 2000, 84(26): 6010~6013

[20] V. I. Kruglov, A. C. Peacock, J. D. Harvey. Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers[J]. J. Opt. Soc. Am. B, 2002, 19(3): 461~469

[21] V. I. Kruglov, A. C. Peacock, J. D. Harvey. Exact self-similar solutions of the generalized nonlinear Schrdinger equation with distributed coefficients[J]. Phys. Rev. Lett., 2003, 90(11): 113902

[22] D. B. Soh, J. Nilsson, A. B. Grudinin. Efficient femtosecond pulse generation using a parabolic amplifier combined with a pulse compressor. II. Finitegain-bandwidth effect[J]. J. Opt. Soc. Am. B, 2006, 23(1): 10~19

[23] J. Limpert, T. Schreiber, T. Clausnitzer et al.. High-power femtosecond Yb-doped fiber amplifier[J]. Opt. Express, 2002, 10(14): 628~638

[24] G. P. Agrawal. 非线性光纤光学原理及应用[M]. 北京: 电子工业出版社, 2002. 42~43

    G. P. Agrawal. Nonlinear Fiber Optics & Application of Nonlinear Fiber Optics[M]. Beijing: Publishing House of Electronics Industry, 2002. 42~43

赵佳生. 光纤放大器中有限增益带宽对自相似脉冲放大演化的数值研究[J]. 中国激光, 2012, 39(8): 0802006. Zhao Jiasheng. Influences of Finite Gain Bandwidth on Evolution of Self-Similar Pulse Propagation in Fiber Amplifiers[J]. Chinese Journal of Lasers, 2012, 39(8): 0802006.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!