中国激光, 2017, 44 (5): 0501004, 网络出版: 2017-05-03   

3.4 MW峰值功率皮秒光纤激光系统的光谱特性 下载: 760次

Spectral Properties of Picosecond Fiber Laser System with 3.4 MW Peak Power
白洋 1,2,*邹峰 1,2王子薇 1,2王兆坤 1,2李秋瑞 1漆云凤 1何兵 1,3周军 1,3,4
作者单位
1 中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800
2 中国科学院大学, 北京 100049
3 南京先进激光技术研究院, 江苏 南京 210038
4 南京中科神光科技有限公司, 江苏 南京 210038
摘要
提出了基于主振荡功率放大(MOPA)结构的皮秒光纤激光系统。该系统将重复频率为29.87 MHz的半导体可饱和吸收镜被动锁模光纤激光器作为种子源。采用预放系统并结合声光调制器将种子源的重复频率降至574 kHz。MOPA结构基于棒状光子晶体光纤(PCF),利用PCF大模场、高增益的特点直接对脉冲宽度为30 ps的脉冲进行放大,有效抑制了自相位调制效应引起的光谱展宽。研究结果表明,所提系统的5 dB光谱线宽与光脉冲峰值功率成比例,该系统最终输出了近衍射极限、峰值功率为3.4 MW的皮秒脉冲(输出功率为20 W时,光束质量因子M2=1.01),最高平均输出功率为21.86 W,脉冲宽度为11.1 ps,中心波长为1030.74 nm,5 dB光谱线宽为1.75 nm。
Abstract
A picosecond fiber laser system based on master oscillator power amplifier (MOPA) is proposed. A passive mode-locked fiber laser with a semiconductor saturable absorber mirror (SESAM) which is with repetition rate of 29.87 MHz is used as the seed source. The repetition rate can be reduced to 574 kHz when a pre-amplifier system is combined with an acousto-optic modulator (AOM). The MOPA structure is based on rod-type photonic crystal fiber (PCF). The pulse with pulse width of 30 ps can be amplified based on properties of large mode field and high gain of PCF, and the spectral expanding caused by the self-phase modulation is effectively suppressed. Results show that the spectral linewidth of 5 dB is proportional to the peak-power of optical pulse of the proposed system (the beam quality factor M2 is 1.01 at the output power of 20 W). The peak-power of the picosecond pulse is 3.4 MW, which is near the diffraction limit. The picosecond pulse with the highest average output power of 21.86 W, pulse width of 11.1 ps, center wavelength of 1030.74 nm and linewidth of 1.75 nm at 5 dB can be obtained.
参考文献

[1] Bloembergen N, Pershan P S. Light waves at the boundary of nonlinear media[J]. Physical Review, 1962, 128(2): 606-622.

[2] 苏永生, 李 亮, 何 宁, 等. 聚晶金刚石表面微结构的激光加工实验[J]. 中国激光, 2014, 41(8): 0803004.

    Su Yongsheng, Li Liang, He Ning, et al. Experiment of micro-structures on the surface of polycrystalline diamond[J]. Chinese J Lasers, 2014, 41(8): 0803004.

[3] Zhou B, Kane T J, Dixon G J, et al. Efficient, frequency-stable laser-diode-pumped Nd∶YAG laser[J]. Optics Letters, 1985, 10(2): 62-64.

[4] Birks T A, Knight J C, Russell P S J. Endlessly single-mode photonic crystal fiber[J]. Optics Letters, 1997, 22(13): 961-963.

[5] Chichkov B N, Momma C, Nolte S, et al. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A, 1996, 63(2): 109-115.

[6] Pronko P P, Dutta S K, Du D, et al. Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses[J]. Journal of Applied Physics, 1995, 78(10): 6233-6240.

[7] 朱若谷. 激光应用技术[M]. 北京: 国防工业出版社, 2006: 112-178.

    Zhu Ruogu. Laser application technology[M]. Beijing: National Defense Industry Press, 2006: 112-178.

[8] Matsas V J, Newson T P, Richardson D J, et al. Self-starting, passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation[J]. Electronics Letters, 1992, 28(15): 1391-1393.

[9] Limpert J, Liem A, Reich M, et al. Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier[J]. Optics Express, 2004, 12(7): 1313-1319.

[10] Agrawal G P. Nonlinear fiber optics[M]. New York: Academic Press, 1995.

[11] 常丽萍, 范 薇, 郭淑琴. 百皮秒脉冲放大中自相位调制效应实验研究[J]. 光子学报, 2011, 40(8): 1181-1185.

    Chang Liping, Fan Wei, Guo Shuqin. Experimental study on self-phase modulation in hundred-picosecond pulse amplification[J]. Acta Photonica Sinica, 2011, 40(8): 1181-1185.

[12] 王子薇, 王兆坤, 邹 峰, 等. 高峰值功率皮秒脉冲棒状光子晶体光纤放大器[J]. 中国激光, 2016, 43(10): 1001001.

    Wang Ziwei, Wang Zhaokun, Zou Feng, et al. High-peak-power rod-type photonic crystal fiber amplifier for picosecond pulses[J]. Chinese J Lasers, 2016, 43(10): 1001001.

[13] Zaouter Y, Cormier E, Rigail P, et al. 30 W, 10 μJ, 10-ps SPM-induced spectrally compressed pulse generation in a low non-linearity ytterbium-doped rod-type fibre amplifier[C]. SPIE, 2007, 6453: 64530O.

[14] Nodop D, Schmidt O, Limpert J, et al. 105 kHz, 85 ps, 3 MW microchip laser fiber amplifier system for micro-machining applications[C]. Conference on Lasers and Electro-Optics, 2008: CThL1.

[15] 张 新, 张恒利, 毛叶飞, 等. 高效短脉冲宽带倍频绿光实现方法[J]. 中国激光, 2016, 43(2): 0202003.

    Zhang Xin, Zhang Hengli, Mao Yefei, et al. Efficient methods of green output by second harmonic generation with short pulse broad-band laser[J]. Chinese J Lasers, 2016, 43(2): 0202003.

[16] Saby J, Cocquelin B, Meunier A, et al. High average and peak power pulsed fiber lasers at 1030 nm, 515 nm, and 343 nm[C]. SPIE, 2010, 7580: 75800I.

[17] Saraceno C J, Heckl O H, Baer C R E, et al. Pulse compression of a high-power thin disk laser using rod-type fiber amplifiers[J]. Optics Express, 2011, 19(2): 1395-1407.

[18] 徐 昕, 胡晓鸿, 冯 野, 等. 正色散光学微腔中光场演化过程研究[J]. 光学学报, 2016, 36(6): 0619001.

    Xu Xin, Hu Xiaohong, Feng Ye, et al. Spatiotemporal evolution of the light field inside the microresonator with normal dispersion[J]. Acta Optica Sinica, 2016, 36(6): 0619001.

[19] 常丽萍. 掺镱双包层光纤放大器放大特性及其非线性现象研究[D]. 上海: 中国科学院上海光学精密机械研究所, 2008.

    Chang Liping. Research on amplification behavior and nonlinear phenomenon of the ytterbium-doped double-clad fiber amplifiers[D]. Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 2008.

白洋, 邹峰, 王子薇, 王兆坤, 李秋瑞, 漆云凤, 何兵, 周军. 3.4 MW峰值功率皮秒光纤激光系统的光谱特性[J]. 中国激光, 2017, 44(5): 0501004. Bai Yang, Zou Feng, Wang Ziwei, Wang Zhaokun, Li Qiurui, Qi Yunfeng, He Bing, Zhou Jun. Spectral Properties of Picosecond Fiber Laser System with 3.4 MW Peak Power[J]. Chinese Journal of Lasers, 2017, 44(5): 0501004.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!