光学学报, 2013, 33 (6): 0622002, 网络出版: 2013-05-15   

一种基于线性模型的光刻投影物镜偏振像差补偿方法

Polarization Aberration Compensation Method for Lithographic Projection Lens Based on a Linear Model
涂远莹 1,2,*王向朝 1,2
作者单位
1 中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800
2 中国科学院大学, 北京 100049
摘要
提出一种基于线性模型的光刻投影物镜偏振像差补偿方法。根据Hopkins矢量部分相干成像理论,推导了投影物镜含有偏振像差时交替型相移掩模(Alt-PSM)光栅图形的空间像光强分布以及偏振像差引起的光栅图形成像位置偏移(IPE)与最佳焦面偏移(BFS)的解析表达式。利用该解析表达式建立了偏振像差与光栅图形成像质量(IPE、BFS)的线性模型。通过该线性模型能快速计算偏振像差线性灵敏度,调整控制相应的标量像差补偿量,从而减小偏振像差对光栅图形成像质量的不利影响,实现偏振像差补偿。该方法的补偿效果主要与标量像差调整精度以及光栅图形对标量像差的灵敏度有关。仿真结果表明,该补偿方法能有效地减小偏振像差引起的IPE以及不同栅距的光栅图形的BFS差值,从而提高光栅图形成像质量。
Abstract
Based on a linear model, a novel method to compensate the polarization aberration of lithographic projection lens is proposed. By using the Hopkins vector theory of partially coherent imaging, the analytical expressions of the aerial image, as well as the image placement error (IPE) and the best focus shift (BFS) induced by the polarization aberrations are derived for the alternating phase-shift mask (Alt-PSM) grating pattern. Based on these analytical expressions, a linear relation model is established between the polarization aberration and the image quality (IPE, BFS). By calculating the polarization aberration linear sensitivities and adjusting the scalar aberrations based on the linear model, the adverse influences of the polarization aberrations on image guality can be minimized, i.e., realizing polarization aberration compensation. The compensation accuracies are dependent on the scalar aberration adjustment accuracy of the projection lens and the sensitivity of the grating pattern to the scalar aberration. The simulation results show that the IPE and the BFS difference of the gratings with different pitches can be effectively reduced, and the image quality can be improved by the polarization aberration compensation method.
参考文献

[1] J. Kye, G. McIntyre, Y. Norihiro et al.. Polarization aberration analysis in optical lithography systems [C]. SPIE, 2006, 6154: 61540E

[2] B. Geh, J. Ruoff, J. Zimmermann et al.. The impact of projection lens polarization properties on lithographic process at hyper-NA [C]. SPIE, 2007, 6520: 65200F

[3] J. Ruoff, M. Totzeck. Using orientation Zernike polynomials to predict the imaging performance of optical systems with birefringent and partly polarizing components [C]. SPIE, 2010, 7652: 76521T

[4] G. R. McIntyre, J. Kye, H. Levinson. Polarization aberrations in hyper-numerical-aperture projection printing: a comparison of various representations [J]. J. Microlithogr. Microfabr. Microsyst., 2006, 5(3): 033001

[5] N. Kita. Technique to manage polarization aberrations [J]. Opt. Rev., 2009, 16(3): 305~312

[6] T. Matsuyama, N. Kita. Polarization aberration control for ArF projection lenses [C]. SPIE, 2009, 7274: 72741M

[7] T. Arai, A. Yamada, K. Mori et al.. Optimization procedure of exposure tools with polarization aberrations [C]. SPIE, 2008, 6924: 69241I

[8] H. H. Hopkins. Canonical pupil coordinates in geometrical and diffraction image theory [J]. Jpn. J. Appl. Phys., 1964, 1(suppl.1-1): 31~35

[9] A. K. Wong. Optical Imaging in Projection Micro-Lithography [M]. Bellingham: SPIE Press, 2005. 67~72, 102~107

[10] R. Clark Jones. A new calculus for the treatment of optical systems [J]. J. Opt. Soc. Am., 1941, 31(7): 488~493

[11] R. Barakat. Exponential versions of the Jones and Mueller-Jones polarization matrices [J]. J. Opt. Soc. Am. A, 1996, 13(1): 158~163

[12] N. Yamamoto, J. Kye, H. J. Levinson. Polarization aberration analysis using Pauli-Zernike representation [C]. SPIE, 2007, 6520: 65200Y

[13] M. Born, E. Wolf. Principles of Optics [M]. Cambridge: Cambridge University Press, 1999. 228~257

[14] V. Agudelo, P. Evanschitzky, A. Erdmann et al.. Evaluation of various compact mask and imaging models for the efficient simulation of mask topography effects in immersion lithography [C]. SPIE, 2012, 8326: 832609

[15] M. Totzeck, P. Grupner, T. Heil et al.. Polarization influence on imaging [J]. J. Microlithogr. Microfabr. Microsyst., 2005, 4(3): 031108

[16] T. Yoshihara, B. Takeshita, A. Shigenobu et al.. New projection optics and aberration control system for the 45-nm node [C]. SPIE, 2007, 6520: 652022

[17] Z. C. Qiu, X. Z. Wang, Q. Y. Bi et al.. Translational-symmetry alternating phase shifting mask grating mark used in a linear measurement model of lithographic projection lens aberrations [J]. Appl. Opt., 2009, 48(19): 3654~3663

涂远莹, 王向朝. 一种基于线性模型的光刻投影物镜偏振像差补偿方法[J]. 光学学报, 2013, 33(6): 0622002. Tu Yuanying, Wang Xiangzhao. Polarization Aberration Compensation Method for Lithographic Projection Lens Based on a Linear Model[J]. Acta Optica Sinica, 2013, 33(6): 0622002.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!