量子光学学报, 2018, 24 (2): 198, 网络出版: 2018-08-04   

声光子晶体微腔的光声传感特性

The Sensing Characteristics of Phoxonic Crystal Microcavity
作者单位
1 南昌大学 物理系, 江西 南昌 330031
2 南昌大学 高等研究院, 江西 南昌 330031
摘要
声光子晶体是一种同时具有光子和声子带隙的人工微结构, 因此可实现对光和声的同时操控, 在腔光力学及声光功能器件领域展现了广阔的应用前景。本文基于有限元数值计算方法, 研究了声光子晶体微腔的光声传感特性。研究结果表明, 通过简单地引入点缺陷, 声光子晶体不仅能很好地实现对光和声场的同时局域, 而且能同时获得光及声信号的高灵敏度传感, 光、声传感灵敏度分别达到了277 nm/RIU, 275 MHz/ms-1。由于光和声两个物理量能同时并独立地实现高灵敏度传感, 因此该种传感器能应用于更为复杂的生化传感。
Abstract
Phoxonic crystal (PhXCs) is a kind of artificial microstructure which has both photonic and phononic band gaps.Thus PhXCs can simultaneously tailor electromagnetic and elastic waves with potential applications for highly controllable photon-phonon interactions and acousto-optical devices.The sensing characteristic of PhXCs microcavity is investigated via the finite element method.By calculating the light and acoustic transmission spectrum, phoxonic sensitivity is obtained.The research results show PhXCs can simultaneously not only confine optical and acoustic waves, but also provide high sensitivity to optical and acoustic waves by simply introducing a point defect into a perfect PhXCs.The optical sensitivity and acoustic sensitivity reaches 277 nm/RIU, 275 MHz/ms-1 respectively.This kind sensor can deal with complex analytes for biosystems due to the fact that it can determine two independent physical properties simultaneously.
参考文献

[1] Kushwaha M S, Halevi P, Dobrzynski L, et al.Acoustic Band Structure of Periodic Elastic Composites[J].Phys Rev Lett, 1993, 10(9):977-1094.DOI:101103/PhysRevB.492313.

[2] Lu Y, A Srivastava.Combining Plane Wave Expansion and Variational Techniques for Fast Phononic Computations[J].J Eng Mech, 2017, 143(12):04017141.DOI:101061/(ASCE)EM.1943-78890001362.

[3] Wormser M, Warmuth F, Korner C.Evolution of Full Phononic Band Gaps in Periodic Cellular Structures[J].Appl Phys A, 2017, 123(10):661.DOI:101007/s00339-017-1278-6.

[4] Yablonovitch E.Inhibited Spontaneous Emission in Solid-state Physics and Electronics[J].Phys Rev Lett, 1987, 58(20):2059.DOI:101103/PhysRevLett.582059.

[5] Chan Y S, Chan C T, Liu Z Y.Photonic Band Gaps in Two Dimensional Photonic Quasicrystals[J].Phys Rev Lett, 1998, 80(5):956-959.DOI:101103/PhysRevLett.80.956.

[6] 吴江海.光子晶体表面波导型光学传感特性研究[J].量子光学学报, 2013, 19(4):362-366.DOI:103788/asqo201319040362.

[7] Eichenfield M, Chan J, Camacho R M, et al.Optomechanical Crystals[J].Nature, 2009, 462(7269):78-82.DOI:101038/nature08524.

[8] Carmon T, Rokhsari H, Yang L, et al.Temporal Behavior of Radiation Pressure Induced Vibrations of an Optical Microcavity Phonon Mode[J].Phys Rev Lett, 2005, 94(22):223902.DOI:101103/PhysRevLett.94223902.

[9] Marre M, Claudel J P, Ciret P, et al.Simultaneous Localization of Photons and Phonons in Two-dimensional Periodic Structures[J].Appl Phys Lett, 2006, 88(25):251907.DOI:101063/12216885.

[10] Yu T B, Wang Z, Liu W X, et al.Simultaneous Large Band Gaps and Localization of Electromagnetic and Elastic Waves in Defect-free Quasicrystals[J].Opt Express, 2016, 24(8):7951.DOI:101364/OE.24007951.

[11] Wang Z, Liu W X, Yu T B, et al.Simultaneous Localization of Photons and Phonons Within the Transparency Bands of LiNbO3 Phoxonic Quasicrystals[J].Opt Express, 2016, 24(20):23353.DOI:101364/OE.24023353.

[12] Lu T W, Hsiao Y H, Ho W D, et al.Photonic Crystal Heteroslab-edge Microcavity with High Quality Factor Surface Mode for Index Sensing[J].Appl Phys Lett, 2009, 94(14):874.DOI:101063/13117225.

[13] Bing P, Yao J, Lu Y, et al.A Surface-plasmon-resonance Sensor Based on Photonic-crystal-fiber with Large Size Microfluidic Channels[J].Opt Appl, 2012, 42(3):493.DOI:105277/oa120306.

[14] Skivesen N, Tetu A, kristensen M, et al.Photonic-crystal Waveguide Biosensor[J].Opt Express, 2007, 15(6):3169.DOI:101364/OE.15003169.

[15] Sunner T, Stichel T, Kwon S H, et al.Photonic Crystal Cavity Based Gas sensor[J].Appl Phys Lett, 2008, 92(26):2486.DOI:101063/12955523.

[16] Lucklum R, Li J.Phononic Crystals for Liquid Sensor Applications[J].Meas Sci Technol, 2009, 20(12):124014.DOI:101088/0957-0233/20/12/124014.

[17] Kaya O A, Cicek A, Salman A, et al.Acoustic Mach-Zehnder Interferometer Utilizing Self-collimated Beams in a Two-dimensional Phononic Crystal [J].Sens Actuators B, 2014, 203(21):197.DOI:101016/j.snb.201406097.

[18] Salman A, Kaya O A, Cicek A, et al.Low-concentration Liquid Sensing by an Acoustic Mach-Zehnder Interferometer in a Two-dimensional Phononic Crystal [J].J Phys D:Appl Phys, 2015, 48(25):255301.DOI:101088/0022-3727/48/25/255301.

[19] Lucklum R, Ke M, Zubtsov M.Two-dimensional Phononic Crystal Sensor Based on a Cavity Mode[J].Sens Actuators B, 2012, 171(9):271-277.DOI:101016/j.snb.201203063.

[20] Lucklum R, Zubtsov M, Oseev A.Phoxonic Crystals-A New Platform for Chemical and Biochemical Sensors[J].Anal Bioanal Chem, 2013, 405(20):6497-6509.DOI:101007/s00216-013-7093-9.

[21] Amoudache S, Pennec Y, Rouhani B D, et al.Simultaneous Sensing of Light and Sound Velocities of Fluids in a Two-dimensional PhoXonic Crystal with Defects[J].J Appl Phys, 2014, 115(13):134503.DOI:101063/14870861.

[22] Amoudache S, Moiseyenko R, Pennec Y, et al.Optical and Acoustic Sensing using Fano-like Resonances in Dual Phononic and Photonic Crystal Plate[J].J Appl Phys, 2016, 119(11):667-1452.DOI:101063/14944600.

[23] Pennec Y, Moiseyenko R, Rouhani B D, et al.Sensing Light and Sound Velocities of Fluids in 2D Phoxonic Crystal Slab[R].IEEE Sensors 2014, Valencia, Spain, November 2-5, p355.DOI:101109/ICSENS.20146985007.

[24] Ma T X, Zou K, Wang Y S, et al.Acousto-optical Interaction of Surface Acoustic and Optical Waves in a Two-dimensional Phoxonic Crystal Hetero-structure Cavity[J].Opt Express, 2014, 22(23):28443.DOI:101364/OE.22028443.

[25] Ma T X, Wang Y S, Zhang C Z, et al.Theoretical Research on a Two-dimensional Phoxonic Crystal Liquid Sensor by Utilizing Surface Optical and Acoustic Waves[J].Sens and Actuators A, 2016, 242:123-131.DOI:101016/j.sna.201603003.

[26] Zou Q S, Yu T B, Liu N H, et al.Acoustic Multimode Interference and Self-imaging Phenomena Realized in Multimodal Phononic Crystal Waveguides[J].J Phys D:Appl Phys, 2015, 48(34):345301.DOI:101088/0022-3727/48/34/345301.

[27] Xu F X, Zou Q S, Zhou Q C, et al.Self-imaging Effect in Photonic Quasicrystal Waveguides:Application to 3 dB Power Splitter for Terahertz Waves[J].Opt Commun, 2016, 367:108-111.DOI:101016/j.optcom.201601035.

[28] Herraez J V, Belda R, et al.Refractive Indices, Densities and Excess Molar Volumes of Monoalcohols+Water[J].J Solut Chem, 2006, 35(9):1315-1328.DOI:101007/s10953-006-9059-4.

[29] Burton C J.A Study of Ultrasonic Velocity and Absorption in Liquid Mixtures[J].J Acoust Soc Am, 1948, 20(2):186-199.DOI:101121/11906362.

周志成, 何灵娟, 陈华英, 于天宝, 刘念华. 声光子晶体微腔的光声传感特性[J]. 量子光学学报, 2018, 24(2): 198. ZHOU Zhi-cheng, HE Ling-juan, CHEN Hua-ying, YU Tian-bao, LIU Nian-hua. The Sensing Characteristics of Phoxonic Crystal Microcavity[J]. Acta Sinica Quantum Optica, 2018, 24(2): 198.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!