Photonics Research, 2018, 6 (4): 040000A1, Published Online: Jul. 10, 2018  

Dispersive non-Hermitian optical heterostructures

Author Affiliations
1 Research & Innovation, Technicolor R&D France, 975 avenue des Champs Blancs, 35576 Cesson-Sévigné, France
2 CCQCN, Department of Physics, University of Crete, P.O. Box 2208, 71003 Heraklion, Greece
3 College of Optics & Photonics-CREOL, University of Central Florida, Orlando, Florida 32816, USA
4 Institute of Electronic Structure and Laser, Foundation for Research and Technology–Hellas, P.O. Box 1527, 71110 Heraklion, Greece
5 National University of Science and Technology MISiS, Leninsky prosp. 4, Moscow 119049, Russia
Figures & Tables

Fig. 1. Geometry of the problem.

下载图片 查看原文

Fig. 2. Absorption coefficient |α1| and parameter Δϵ as the functions of frequency at α2=0.2 (solid red line), α2=2 (dashed black line), and α2=5 (dash-dot blue line).

下载图片 查看原文

Fig. 3. (a) Reflectance [R(L)(ω)- solid red line and R(R)(ω)- dashed blue line] and transmittance (solid black line) of TM wave incident at Θ=15° on 1D system with ω01=1  PHz, ω02=1.2  PHz, γ1=0.067  PHz, γ2=0.14  PHz, |α1|=20.86, α2=2, ϵ01=2, ϵ02=3.22, and dg=dl=500  nm. (b) Real (solid lines) and imaginary (dashed lines) parts of dielectric permittivities of the layers near emission frequencies of the gain (red lines) and loss (black lines) regions. (c) Modulus of eigenvalues of S-matrix for 1D system as a function of frequency; red and blue lines correspond to the different eigenvalues of the same scattering matrix. The range of frequencies in (a) and (c) corresponding to the loss dominated system is gray shaded.

下载图片 查看原文

Fig. 4. (a) Reflectance [R(L)(ω)- solid red line and R(R)(ω)- dashed blue line] and transmittance (solid black line) of TM wave incident at Θ=0° and ω=0.92  PHz on non-Hermitian system with ω01=1  PHz, ω02=2  PHz, γ1=0.067  PHz, γ2=0.14  PHz, α1=2, ϵ01=2, ϵ02=2.2, and dg=dl=500  nm as a function of absorption coefficient. (b) Distribution of the energy flux density of an electromagnetic field in the system with the default parameters and α2=92.3 (solid green line) and α2=156.5 (dashed brown line); the area corresponding to gain material is red shaded, the area corresponding to loss material is green shaded. (c), (d) Transmittance of TM wave incident at Θ=0° (solid black line), Θ=30° (dash-dot green line), Θ=60° (dashed brown line), and dg=500  nm. The range of frequencies in (a), (c), and (d) corresponding to loss dominated system is gray shaded.

下载图片 查看原文

Fig. 5. (a) Geometry of non-Hermitian periodic stack. (b), (c) Geometries of non-Hermitian random stacks. (d), (e) Transmittance of TM wave through the stacks incident at ω=0.92  PHz and (d) Θ=0°, (e) Θ=60°; dash-dot black curve, four layers with dg=dl=250  nm, geometry of the system is presented in (a); dashed blue curves, six layers with thicknesses dg1=dg3=dl1=dl3=200  nm and dg2=dl2=100  nm, geometry of the stack is presented in (b); solid green curves, six layers with thicknesses dg1=dg2=200  nm, dl1=dl2=dg3=100  nm, and dl3=300  nm, geometry of the stack is presented in (c). The relevant layer parameters for the stacks are the same as in Fig. 4. The range of frequencies in (d) and (e) corresponding to loss dominated system is gray shaded.

下载图片 查看原文

Fig. 6. Eigenvalues of the S-matrix as a function of absorption coefficient for (a) PT-symmetric bilayer with ω01=ω02=ω=1  PHz, γ1=γ2=0.067  PHz, ϵ01=ϵ02=2, and dg=dl=500  nm at Θ=0° (solid and dashed lines of the same color correspond to the real and imaginary parts of eigenvalues) and (b) non-Hermitian bilayer with ω01=1  PHz, ω02=2  PHz, γ1=0.067  PHz, γ2=0.14  PHz, α1=2.4, ϵ01=2, ϵ02=2.2, and dg=dl=500  nm at ω=2.65  PHz and Θ=0°. Red and blue lines correspond to the eigenvalues λ1 and λ2. Vertical dashed lines indicate the position of EPs.

下载图片 查看原文

O. V. Shramkova, K. G. Makris, D. N. Christodoulides, G. P. Tsironis. Dispersive non-Hermitian optical heterostructures[J]. Photonics Research, 2018, 6(4): 040000A1.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!