光学学报, 2016, 36 (11): 1106002, 网络出版: 2016-11-08   

分段式光纤传输系统的扰模增益及能量变化

Scrambling Gain and Energy Variation of Sectional Fiber Transmission Systems
韩建 1,2,*肖东 1,2叶慧琪 1,2吴元杰 1,2徐韦佳 3
作者单位
1 中国科学院国家天文台南京天文光学技术研究所, 江苏 南京 210042
2 中国科学院天文光学技术重点实验室, 江苏 南京 210042
3 中国人民解放军理工大学理学院基础实验室, 江苏 南京 211101
摘要
天文探测中,要求类地行星探测中视向速度的测量精度达到10 cm/s。圆形光纤扰模引起的谱线漂移成为影响视向速度测量精度的一个主要因素。提出了圆形结合多边形光纤的分段式光纤传输系统,以改善圆形光纤的扰模特性。利用搭建的测试光纤远近场光斑质量的光学系统,评价光纤出射场的光斑质量;分别研究了圆形光纤、圆形结合正方形光纤、圆形结合八边形光纤的分段式光纤传输系统在不同耦合条件下的远近场分布;分析了系统的扰模增益及能量变化。结果表明,圆形结合多边形光纤的分段式光纤传输系统提高了系统的扰模特性和稳定性。当多边形光纤芯径小于圆形光纤时,较大的入射偏移量引起耦合能量损失;当多边形光纤芯径大于圆形光纤芯径时,能量守恒。圆形结合八边形光纤传输系统的近场质心偏移较小,扰模系数较高,可有效减小耦合误差引起的谱线漂移,从而提高视向速度的测量精度。
Abstract
In astronomical detection, the measurement precision of radial velocity in Earth-like planet detection is required to reach 10 cm/s. The spectrum drift caused by circular fiber scrambling is becoming a major factor that influences the measurement precision of radial velocity. The sectional fiber transmission systems of circular fiber combined with polygonal fiber are proposed to improve the scrambling property of circular fiber. The spot quality of fiber output field is evaluated by an optical system for testing spot quality of far field and near field. The far field and near field distributions of sectional fiber transmission systems, which are consisted of circular fiber, circular fiber combined with square fiber, and circular fiber combined with octagonal fiber, are studied under different coupling conditions. The scrambling gains and energy variations of these fiber transmission systems are analyzed. The results show that the scrambling property and the system stability are improved by the sectional transmission system of circular fiber combined with polygonal fiber. The coupling energy loss is caused by large incidence shift on the condition that the core diameter of polygonal fiber is smaller than the core diameter of circular fiber, and the conservation of the energy holds on when the core diameter of polygonal fiber is larger than or equal to the core diameter of circular fiber. The transmission system of circular fiber combined with octagonal fiber, which is with a small mass center offset in the near field and a large scrambling coefficient, can decrease the spectrum drift induced by coupling error, and increase the measurement precision of radial velocity.
参考文献

[1] Halverson S, Roy A, Mahadevan S, et al. An efficient, compact, and versatile fiber double scrambler for high precision radial velocity instruments[J]. The Astrophysical Journal, 2015, 806: 61.

[2] Barnes S I, MacQueen P J. A high-efficiency fibre double-scrambler prototype[C]. SPIE, 2010, 7735: 773567.

[3] Spronck J F P, Fischer D A, Kaplan Z, et al. Fiber scrambling for high-resolution spectrographs. II. A double fiber scrambler for Keck observatory[J]. Publications of the Astronomical Society of the Pacific, 2015, 127(956): 1027-1037.

[4] Yan L S, Yao S X, Lin L, et al. Improved beam uniformity in multimode fibers using piezoelectric-based spatial mode scrambling for medical applications[J]. Optical Engineering, 2008, 47(9): 090502.

[5] Mahadevan S, Halverson S, Ramsey L. et al. Suppression of fiber modal noise induced radial velocity errors for bright emission-line calibration sources[J]. The Astrophysical Journal, 2014, 786 1.

[6] Halverson S, Mahadevan S, Ramsey L, et al. The habitable-zone planet finder calibration system[C]. SPIE, 2014, 9147: 91477Z.

[7] Spronck J F P, Fischer D A, Kaplan Z A. Use and limitations of single- and multi-mode optical fibers for exoplanet detection[M]. Vienna: InTech Open Access Publisher, 2012.

[8] Spronck J F P, Kaplan Z A, Fischer D A, et al. Extreme Doppler precision with octagonal fiber scramblers[C]. SPIE, 2012, 8446: 84468T.

[9] Feger T, Brucalassi A, Grupp F U, et al. A testbed for simultaneous measurement of fiber near and far-field for the evaluation of fiber scrambling properties[C]. SPIE, 2012, 8446: 844692.

[10] Stürmer J, Stahl O, Schwab C, et al. CARMENES in SPIE 2014. Building a fibre link for CARMENES[C]. SPIE, 2014, 9151: 915152.

[11] Bouchy F, Díaz R F, Hébrard G, et al. SOPHIE+: first results of an octagonal-section fiber for high-precision radial velocity measurements[J]. Astronomy & Astrophysics, 2012, 549: A49.

[12] Plavchan P P, Bottom M, Gao P, et al. Precision near-infrared radial velocity instrumentation II: noncircular core fiber scrambler[C]. SPIE, 2013, 8864: 88640G.

[13] Sablowski D P, Plüschke D, Weber M, et al. Comparing modal noise and FRD of circular and non-circular cross-section fibres[J]. Astronomische Nachrichten, 2015, 337(3): 216-225.

[14] 杨聪, 韩建, 吴元杰, 等. 动态扰模抑制多模光纤散斑的理论及实验研究[J]. 激光与光电子学进展, 2015, 52(9): 090602.

    Yang Cong, Han Jian, Wu Yuanjie, et al. Theoretical and experimental study on suppression of speckle from a multimode optical fiber by dynamic scrambling[J]. Laser & Optoelectronics Progress, 2015, 52(9): 090602.

[15] 王森, 朱冰. 大芯径光谱传光光纤焦比退化特性研究[J]. 光电工程, 2011, 38(7): 17-24.

    Wang Sen, Zhu Bing. Focal ratio degradation of large core spectrum light-transmitting optical fiber[J]. Opto-Electronic Engineering, 2011, 38(7): 17-24.

[16] 廖素英, 巩马理. 大模场光纤直弯过渡中的模场演变分析[J]. 中国激光, 2013, 40(3): 0305006.

    Liao Suying, Gong Mali. Analysis of mode evolution between straight and curved fiber transition in large mode area fibers[J]. Chinese J Lasers, 2013, 40(3): 0305006.

[17] 韩建, 肖东. 多边形光纤远近场扰模特性[J]. 光学学报, 2016, 36(4): 0406003.

    Han Jian, Xiao Dong. Near and far field scrambling properties of polygonal core optical fiber[J]. Acta Optica Sinica, 2016, 36(4): 0406003.

韩建, 肖东, 叶慧琪, 吴元杰, 徐韦佳. 分段式光纤传输系统的扰模增益及能量变化[J]. 光学学报, 2016, 36(11): 1106002. Han Jian, Xiao Dong, Ye Huiqi, Wu Yuanjie, Xu Weijia. Scrambling Gain and Energy Variation of Sectional Fiber Transmission Systems[J]. Acta Optica Sinica, 2016, 36(11): 1106002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!