应用光学, 2019, 40 (3): 404, 网络出版: 2019-06-10  

基于计算全息的衍射光学元件印模制备方法研究

Research on preparation method of mold of diffractive optical element based on computer generated holography
作者单位
西安工业大学 光电工程学院,陕西 西安 710032
摘要
介绍了一种基于计算全息的非对称多台阶衍射光学元件印模制备方法,研究了相位型计算全息的工作原理和设计方法,建立了相应的光学系统和衍射光波模型,设计了求取相位型印模微结构的算法流程。在理论分析的基础上,以叠心图案为例,利用MATLAB分别仿真了2台阶、4台阶、8台阶、16台阶衍射光学元件的相位信息以及表面微结构形貌,并对比了其再现图像的质量,发现台阶数越多,再现图像的质量越好。获得印模空间高度数据以及表面结构分布后,利用单点金刚石车削技术,采用快刀加工方式,分别加工了元件尺寸为6 mm×6 mm,最小特征尺寸为30 um的2台阶和4台阶印模,并获得了实际加工的台阶轮廓曲线以及表面结构轮廓。最后采用紫外固化纳米压印技术实现了4台阶印模的复制过程,并对复制样品进行了图像再现,结果表明该方法能用于非对称低台阶数衍射光学元件印模的制备。
Abstract
The preparation method of mold based on computer generated holography(CGH) of asymmetric multi-step diffractive optical element was introduced, the working principle and design method of phase-type CGH were studied, the corresponding optical system and the diffracted light wave model were established and the algorithm flow chart for obtaining phase-type mold microstructure was designed. Taking a folded heart pattern as an example, the phase information and surface microstructure morphology of 2-step, 4-step, 8-step and 16-step diffractive optical element were simulated by MATLAB, and the quality of the reconstructed image was compared on the basis of theoretical analysis. It is found that the more the number of steps is, the better the quality of the reproduced images will be. After obtaining the height data of the die space and the distribution of the surface structure, the 2-step and 4-step molds with the 6 mm×6 mm element size and the smallest characteristic size 30 um were respectively obtained by the fast knife processing method and the single-point diamond turning technology, and the step contour curve and surface structure contour of actual processing were obtained. Finally, the ultraviolet(UV)-curing nanoimprint technology was used to realize the replication process of the 4-step mold, and the image of replicated samples were produced. The results show that the method can be used for the mold preparation of asymmetric low-step diffractive optical elements.
参考文献

[1] 颜树华.衍射微光学设计[M].北京:国防工业出版社,2011.

    YAN Shuhua. Design of diffractive micro-optics[M]. Beijing: National Defense Industry Press, 2011.

[2] 周海宪,程云芳.全息光学——设计、制造和应用[M].北京:化学工业出版社,2006:191-193.

    ZHOU Haixian, CHENG Yunfang. Holographic optics-design, manufacture and application[M]. Beijing: Chemical Industry Press, 2006:191-193.

[3] 郑国兴,吕良宇,李松,等.基于超表面材料的光波相位精密操控新技术[J].应用光学,2017,38(02):153-158.

    ZHENG Guoxing, LV Liangyu, LI Song, et al. A new technology of light wave phase precision manipulation based on supersurface materials[J]. Journal of Applied Optics, 2017,38(02):153-158.

[4] LI Y Z, ABOOKASIS D, ROSEN J. Computer-generated holograms of three-dimensional realistic objects recorded without wave interference[J]. Applied Optics, 2001, 40(17): 2864.

[5] BAI X H, LIN W, REN Y P, et al. Reflection holography for three-dimensional display based on computer-generated holography[J]. Acta Photonica Sinica, 2012, 41(5):591-595.

[6] 陈林,许忠保,邬文俊,等.基于博奇编码离轴全息方法的研究[J].应用光学,2014,35(6):1003-1008.

    CHEN Lin, XU Zhongbao, WU Wenjun, et al. Research on off-axis holographic method based on bodge coding[J]. Journal of Applied Optics, 2014, 35(6): 1003-1008.

[7] 王海祥. 纳米压印镍模板的复制工艺研究[D]. 大连: 大连理工大学, 2013.

    WANG Haixiang. Research on the replication process of nickel nano-imprint stamp[D]. Dalian: Dalian University of Technology, 2013.

[8] HONG S H, LEE J H, LEE H. Fabrication of 50nm patterned nickel stamp with hot embossing and electroforming process[J]. Microelectronic Engineering, 2007, 84(5/6/7/8): 977-979.

[9] 刘鑫, 张满, 庞辉, 等. 基于纳米压印的大角度衍射光学元件批量化制备方法[J]. 光子学报, 2016, 45(6): 102-106.

    LIU Xin, ZHANG Man, PANG Hui, et al. Fabrication of large-angle diffractive optical element based on nanoimprint lithography[J]. Acta Photonica Sinica, 2016, 45(6): 102-106.

[10] HONG S H, LEE J H, LEE H. Fabrication of 50nm patterned nickel stamp with hot embossing and electroforming process[J]. Microelectronic Engineering, 2007, 84(5/6/7/8): 977-979.

[11] 罗军. 基于紫外压印的二元光学器件制备方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    LUO Jun. Research on fabrication of binary optics elements based on uv-nil[D]. Harbin: Harbin Institute of Technology, 2015.

[12] 郭慧晶. 基于普通光盘与软模板纳米压印技术的二维微纳结构的制备[D]. 太原: 太原理工大学, 2016.

    GUO Huijing. Fabrication of two-dimensions micro-and nano-structures based on optical disc and nanoimprint using soft template[D]. Taiyuan: Taiyuan University of Technology, 2016.

[13] SDERSTRM K, ESCARR J, CUBERO O, et al. UV-nano-imprint lithography technique for the replication of back reflectors for n-i-p thin film silicon solar cells[J]. Progress in Photovoltaics: Research and Applications, 2011, 19(2): 202-210.

[14] MEIER M, PAETZOLD U W, PRMPERS M, et al. UV nanoimprint for the replication of etched ZnO: Al textures applied in thin-film silicon solar cells[J]. Progress in Photovoltaics: Research and Applications, 2013,22(12): 2382.

[15] 虞祖良,金国藩.计算机制全息图[M].北京:清华大学出版社,1984.

    YU Zuliang, JIN Guofan. Computer generated hologram [M]. Beijing: Tsinghua University press, 1984.

[16] 楼木. 基于MATLAB的3D全息及计算全息图的编码和再现研究[D]. 南昌: 南昌大学, 2013.

    LOU Mu. Research on three-dimensional holography and computer generated hologram’s encoding and reproduction based on MATLAB[D]. Nanchang: Nanchang University, 2013.

[17] 张梦妮, 张锦, 蒋世磊, 等. 用于智能显示的相位型计算全息图的设计[J]. 液晶与显示, 2018, 33(3): 245-253.

    ZHANG Mengni, ZHANG Jin, JIANG Shilei, et al. Design of phase type computer-generated-hologram for intelligent display[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(3): 245-253.

[18] 张满. 基于纳米压印技术的微纳结构制备与应用研究[D].北京:中国科学院研究生院(光电技术研究所),2016.

    ZHANG Man. Fabrication and application of micro/nano-structure based on nanoimprint lithography[D].Graduate School of Chinese Academy of Sciences (Institute of Photoelectric Technology), 2016.

武耀霞, 张锦, 孙国斌, 蒋世磊, 弥谦, 李世杰, 杨鹏飞, 王玉瑾. 基于计算全息的衍射光学元件印模制备方法研究[J]. 应用光学, 2019, 40(3): 404. WU Yaoxia, ZHANG Jin, SUN Guobin, JIANG Shilei, MI Qian, LI Shijie, YANG Pengfei, WANG Yujin. Research on preparation method of mold of diffractive optical element based on computer generated holography[J]. Journal of Applied Optics, 2019, 40(3): 404.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!