强激光与粒子束, 2010, 22 (8): 1881, 网络出版: 2010-09-15   

316L不锈钢粉末光纤激光选区熔化特性

Fiber laser selective melting of 316L stainless steel powder
作者单位
1 华南理工大学 机械与汽车工程学院, 广州 510640
2 广州瑞通激光科技有限公司, 广州 510378
摘要
采用自行研制的光纤激光选区熔化快速成型设备, 研究了选区激光熔化316L不锈钢粉末工艺参数、能量输入与样件致密度、表面形貌之间的关系以及微观组织特征。结果表明:扫描速度对成型效果影响最为显著; 样件致密度随着激光能量密度提高有逐渐增大的趋势; 能量密度作为选区激光熔化工艺的技术指标具有可操作性; 表面形貌由激光功率与扫描速度比值所决定。深入探讨了能量输入、熔化凝固行为、激光功率与扫描速度比值与样件致密度、表面形貌的关系。结果表明:选区激光熔化凝固组织层内、层间熔合处为弧形, 且为冶金结合, 金相组织主要由柱状晶与等轴晶组成, 层内靠近熔合线周围是柱状晶, 而层间靠近熔合线附近主要是细小等轴晶, 晶粒直径为1 μm左右。
Abstract
A selective laser melting(SLM) system equipped with fiber laser was designed to study the technical parameters, energy density, relative density, surface profile and characteristics of micro structures of 316L stainless steel powder. Results show that the scan speed has most significant effect on fabrication results, and the relative density increases with the energy density as an appropriate operational technical factor in SLM process. Surface profiles are determined by the ratio between laser power and scan speed. The relations among energy input, the melting and solidification way of the powder, the ratio between laser power and scan speed, relative density and surface profiles are deeply discussed. The micro-structure of SLM part’s fused line that between adjacent tracks or interlayer is in arc shape and metallurgical bonded. The micro-structures are mainly composed of columnar crystal and equiaxed grains, the fusion line inner layer is surrounded by columnar crystal, and near the fusion line interlayer is fine equiaxed grains, and the grains size can be as small as about 1 μm.
参考文献

[1] Santos E S, Shiomi M, Osakada K, et al. Rapid manufacturing of metal components by laser forming[J]. International Journal of Machine Tools and Manufacture, 2006, 46(12/13): 1459-1468.

[2] Yang Jinsong, Shi Yusheng, Shen Qiwen, et al. Selective laser sintering of HIPs and investment casting technology[J]. Journal of Materials Processing Technology, 2009, 209(4): 1901-1908.

[3] Yadroitsev I, Shishkovsky I, bertrand P, et al. Manufacturing of fine-structured 3D porous filter elements by selective laser melting[J]. Applied Surface Science, 2009, 255(10): 5523-5527.

[4] Abe F, Osakada K, Shiomi M, et al. The manufacturing of hard tools from metallic powders by selective laser melting[J]. Joural of Materials Processing Technology, 2001, 111(1-3):210-213.

[5] Kruth J P, Froyen L, Van Vaerenbergh J, et al. Selective laser melting of iron-based powder[J]. Journal of Materials Processing Technology, 2004, 149(1/3): 616-622.

[6] 廖健宏, 蒙红云, 王红卫, 等.光纤激光精密切割系统的研制及其应用[J].中国激光, 2007, 34(1):133-136.(Liao Jianhong, Meng Hongyun, Wang Hongwei, et al. Investigation and application of fiber laser precision cutting system. Chinese Journal of Lasers, 2007, 34(1):133-136)

[7] Rehme O, Emmelmann C. Reproducibility for properties of selective laser melting products[C]//Proceedings of the Third International WLT Conference on Lasers in Manufacturing. 2005:1-6.

[8] Tolochko N K, Mozzharov S E, Yadroitsev I A, et al. Balling processes during selective laser treatment of powders[J]. Rapid Prototyping Journal, 2004, 10(2):78-87.

[9] Yadroitsev I, Bertrand P, Smurov I. Parametric analysis of the selective laser melting process[J]. Applied Surface Science, 2007, 253(19):8064-8065.

[10] SanZ-Guerrero J, Ramos-GreZ J. Effect of total applied energy density on the densification of copper-titanium slabs produced by a DMLF process[J]. Journal of Materials Processing Technology, 2008, 202:389-346.

[11] Morgan R, Sutcliffe C J, Neill W O. Density analysis of direct metal laser re-melted 316L stainless steel cubic primitives[J]. Journal of Materials Processing Technology, 2004, 39(4):1195-1205.

[12] Yadroitsev I, Bertrand P, Laget B, et al. Application of laser assisted technologies for fabrication of functionally graded coatings and objects for the international thermonuclear experimental reactor components[J]. Journal of Nuclear Materials, 2007, 362(2/3):189-196.

[13] Beal V E, Erasenthiran P, Hopkinson N, et al. The effect of scanning strategy on laser fusion of functionally graded H13/Cu materials[J]. The International Journal of Advanced Manuturing Technology, 2006, 30(9/10):844-852.

王迪, 杨永强, 何兴容, 吴伟辉, 苏旭彬, 王红卫. 316L不锈钢粉末光纤激光选区熔化特性[J]. 强激光与粒子束, 2010, 22(8): 1881. Wang Di, Yang Yongqiang, He Xingrong, Wu Weihui, Su Xubing, Wang Hongwei. Fiber laser selective melting of 316L stainless steel powder[J]. High Power Laser and Particle Beams, 2010, 22(8): 1881.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!